
XVAN 2.3.2
-- tutorial --

-- everything is a location, an object or a timer --

(c) 2016, 2017, 2018 Marnix van den Bos 1

Table of Contents

About XVAN… ... 5

About this tutorial .. 5

Basic things ... 5

Vocabulary .. 5

Object, locations and timers ... 5

Structure of this tutorial ... 6

Part 1 – the vocabulary ... 6

Verbs (and default code) .. 6

look ... 7

examine .. 8

get ... 9

drop .. 11

inventory .. 13

go .. 14

Directions ... 14

End of part 1 ... 16

Part 2 – Basic things .. 17

Common descriptions ... 17

Common flags ... 18

Common attributes .. 18

Common triggers .. 18

t_i ... 18

t_exa ... 19

t_entrance .. 19

t_exit ... 21

logging .. 21

save and restore functions ... 21

quit function ... 22

o_player object ... 22

starting the game .. 24

(c) 2016, 2017, 2018 Marnix van den Bos 2

Moving the player around .. 25

looking around .. 28

keeping the score ... 28

save function .. 29

verbose function ... 29

End of part 2 ... 32

Part 3 – a sample story ... 33

The locations .. 33

south hallway .. 34

north hallway .. 36

living room .. 36

kitchen .. 38

closet .. 39

cellar ... 40

halfway stairs .. 41

upstairs ... 42

bedroom ... 43

garden .. 44

shed .. 45

the objects .. 45

player .. 46

nst ... 46

kitchen door ... 46

kitchen window .. 52

keyhole ... 56

rusty key ... 57

glass fragment .. 58

toaster .. 59

hacksaw .. 60

stairs ... 61

steps ... 62

button ... 64

closet door .. 65

floor .. 66

(c) 2016, 2017, 2018 Marnix van den Bos 3

Carpet ... 68

trapdoor ... 69

flames ... 73

water tap .. 73

sink object .. 76

water in bedroom ... 77

water in closet .. 78

water in hallway north .. 79

drain pipein bedroom ... 79

drain pipe in closet ... 80

End of part 3 ... 82

Part 4 – colors, fonts and status window .. 83

Colors .. 83

Fonts (Glk interpreter) .. 83

Status window (Glk interpreter) ... 83

Part 5 – disambiguation .. 86

No Such Thing ... 87

o_nst object .. 88

Finally ... 91

(c) 2016, 2017, 2018 Marnix van den Bos 4

About XVAN…
XVAN is a text adventure authoring system. It consists of a compiler, an interpreter and an authoring
language.

The XVAN compiler is a console application. It takes a story file (text file) as input and compiles it to a
binary with byte code.
The XVAN interpreter comes in 2 versions: a console version and a Glk version.The interpreter
executes the binary file created by the compiler.

Platforms - Linux and Windows
XVAN is available for Windows and Linux. Story files and save files are portable, what you compile or
save on Windows will work on Linux and vice versa.

About this tutorial
This tutorial teaches:

 setting up the basic things;

 vocabulary;

 working with objects, locations and timers.

Basic things
XVAN was developed based on the idea that the story author must have flexibility in writing his
stories. This means very little is predefined, so the author initiallymust invest some time to take care
of some basic things (moving around, inventory, save, restore, etc). But this needs only be done
once, because the basics can be reused in other stories.

Vocabulary
The vocabulary is one of the basic things to set up, but it’s important enough to have its own section
in the tutorial. XVAN comes with one predefined word: “go”. All other words must be defined by the
author. The vocabulary is meant to be story independent so it can be reused and grow with next
stories. It is adviced to have the vocabulary in a dedicated file, separate from the story file.

Object, locations and timers
As described in the introduction document, an XVAN story file is a collection of locations, objects and
timers. The tutorial shows how to define these and how to model the behavior.

(c) 2016, 2017, 2018 Marnix van den Bos 5

Structure of this tutorial
In this tutorial we will write a sample story through a set of exercises. At the start and end of each
part we will have predefined vocabulary and story files. Of course you can create your own files, but
for the tutorial we need predefined file sets that match with the tutorial text.

Note: the XVAN compiler requires unformatted text files. Copy/pasting source code from other file
types may introduce invisible control characters that generate compiler errors.

Part 1 – the vocabulary
So, we are going to think about the vocabulary before we designed our story? Yes, we want to be
able to reuse the vocabulary for other games so there’s no problem making a first version without
having a story yet.
We start with file “part 1 start.voc”. The sections for nouns, adjectives, prepositions, adverbs,
articles, question words and conjunctions are straightforward: the more words you put here, the
more words the interpreter will know. Note that a word can be in more than 1 section. E.g. ‘green’
can be an adjective (color) but also a noun (golf green). The parser will combine word types until if
finds a valid English syntax in the user input (or not).

For the remainder of this section we will focus on verbs and directions.

Verbs (and default code)
A verb can be defined as a single word:
$VERB take ENDVERB

But a verb can also be used as a last resort when a user command cannot be handled by a location or
an object. As described in the XVAN introduction document, the user input is offered to all locations
and objects in scope. If none of them can process the user input, we can fall back to the verb default
code to respond to the message. Likewise, actions that will be always be handled in the same way
(e.g. score) can be coded in the verb defaults.

For our tutorial game we want at least the following verbs:

 look or l;

 examine or x

 get or take

 drop

 inventory or i

 and the predefined verb ‘go’

Note: technically speaking, inventory is not a verb, but by defining it as one, the user can enter it
as a single word on the command line.

(c) 2016, 2017, 2018 Marnix van den Bos 6

look
With verb default code we are only interested in default replies, when none of the locations or
objects have responded (which is very unlikely for ‘look’, by the way).

So, what kind of messages would do as default? The user could have entered different look
commands, like “look”, “look at something”, “look in/on/under/… something”. The verb syntax
allows to define responses for all these situations. Responses could be “You see nothing special.”,
“You see nothing special about the something.” and “There’s nothing in/on/under/… the something.”

In XVAN code:

$VERB look
 “look”
 printcr(“You see nothing special.”)

 “look at [o_subject]”
 printcr(“You see nothing special about [the] [o_subject].”)

 “look [prepos] [o_subject]”
 printcr(“There’s nothing [prepos] [the] [o_subject].”)
ENDVERB

A little bit about [o_subject], [prepos] and [the]. These are called wildcards. During play, they are
replaced with the user input. If the user types “look behind the couch”, [prepos] will be replaced by
‘behind’ and [o_subject] by ‘couch’. [the] means that the interpreter must print the article in case
there is one defined with the subject. There also is [a] which will print either “a” or “an”.

But ‘at’ also is a preposition. Because the “look at [o_subject]” line is defined before the “look
[prepos] [o_subject]” line, this line will be executed first. If the lines were reversed, “look at” would
never be executed because the interpreter stops after a matching line is found.

But we’re not there yet. What if the user enters a look-sentence with a syntax that we didn’t cover
here?, like for example “look carefully” (carefully being an adverb)? We cannot cover everything, so
we have the DEFAULT section. This usually prints a very generic response that fits all user input like “I
only understood you as far as wanting to look.”

Finally, suppose we’re in the dark and can’t see anything. Than all off the above is useless. We need
some sort of initial test possibility, before anything is done with the verb. This is the verb prologue.
The prologue is executed right after the user input is parsed, even before the input is handed over to
the objects or locations.

(c) 2016, 2017, 2018 Marnix van den Bos 7

Our verb ‘look’ with DEFAULT and PROLOGUE sections:

$VERB look
 PROLOGUE
 if not(islit(o_player)) then
 printcr(“It is pitch black.”)
 disagree()
 else
 agree()

 “look”
 printcr(“You see nothing special.”)

 “look at [o_subject]”
 printcr(“You see nothing special about [the] [o_subject].”)

 “look [prepos] [o_subject]”
 printcr(“There’s nothing [prepos] [the] [o_subject].”)

 DEFAULT
 printcr(“I only understood you as far as wanting to look.”)
ENDVERB

The function disagree() tells the interpreter to stop further execution of the user input. Likewise,
agree() tells to continue. By default, the compiler will add agree() at the end of code.

examine
The verb examine differs from look in the way that it always requires a subject. If the user only enters
‘examine’, we want to ask for additional information about the subject to be examined. XVAN has
the getsubject() function to do this.

In XVAN code:

$VERB examine SYNONYM x
 “examine”
 printcr(“What do you want to examine?”)
 getsubject()

 “examine [o_subject]”
 printcr(“You see nothing special about [the] [o_subject].”)

 DEFAULT
 printcr(“I only understood you as far as wanting to examine something.”)
ENDVERB

The SYNONYM keyword tells the interpreter that ‘examine’ and ‘x’ are identical.

There’s no prologue here to check if we are in the dark. Why? The parser will try to map the user
input to a subject to be examined. In this process it will take into account whether the subject is
visible to the player. So, when the user refers to a subject he cannot see, the parser will generate a
“you don’t see that here” message. With the ‘look’ verb, there was no subject so we had to check it
ourselves.

(c) 2016, 2017, 2018 Marnix van den Bos 8

get
The verb ‘get’ is similar to ‘examine’, but we can make it a bit more complicated. We have to make a
design decision for “get something”:

 Either we say that all get actions should be defined by the objects and the verb will print a
default message like “you can’t get the [o_subject].”
or

 We say that default behavior for “get something” is that it will be picked up and that any
exceptions must be handled by the objects.

To make things a bit more interesting, let’s implement the second option, so we give more
intelligence to the verb.

First of all, before each execution of a get command, we must make sure the subject can be picked
up. This can be implemented in a prologue:

 PROLOGUE
 If equal(o_subject, %none) then
 agree()
 else
 if not(testflag(o_subject.f_takeable)) then
 printcr(“[the] [o_subject] is not something that can be taken.”)
 disagree()
 endif

Some new things here.

In the else part we test whether the subject can actually be picked up. We do this by testing the flag
f_takeable. If it is set, the subject can be carried. If not, the verb will tell the interpreter to stop by
calling the disagree() function.

As we will see in the story file, f_takeable is a common flag, each object and location has it. Common
as opposed to local flags that are specific to an object or location. Testing a wildcard for a local flag
will generate a compiler error, because it is not guaranteed at compile time that the subject will
indeed have the local flag.

In the if part we test if the user actually entered a subject with his command. Suppose he only
entered “take”, then testing for flag o_subject.f_takeable would not be possible. We know that the
user did not enter a subject when the o_subject wildcard has value %none.

(c) 2016, 2017, 2018 Marnix van den Bos 9

Our get verb

$VERB get SYNONYM take SYNONYM grab
 PROLOGUE
 If equal(o_subject, %none) then
 agree()
 else
 if not(testflag(o_subject.f_takeable)) then
 printcr(“[the] [o_subject] is not something that can be taken.”)
 disagree()
 endif

 “get”
 printcr(“What do you want to get?”)
 getsubject()

 “get [o_subject]”
If not(owns(o_actor, o_subject)) then
 move(o_subject, o_actor)
 setflag(o_subject.f_bypass)
 printcr(“[o_subject]: taken.”)
 else
 printcr(“But [o_actor] already [o_actor.r_have] [the] [o_subject].”)

 DEFAULT
 printcr(“I only understood you as far as wanting to get something.”)
END_VERB

The verb will generate an error response if the actor already carries the subject.

But what’s with this o_actor thing? Why not use o_player? Well, there’s a good explanation for that.
Usually, the player will be the actor, but we can also give commands to an npc (non-player
character). After parsing the user input, the interpreter will set o_actor to the entity who must
perform the command.

Examples:
 “get lamp”, o_actor = o_player

 “Fred, get lamp” , o_actor = o_fred

We don’t know beforehand who the actor will be and we want the verb default code to work with all
actors. Hence the [o_actor]. As a side effect we must also define an r_have attribute to store the
actor’s correct conjugation for the verb “to have” for printing (see part 2 about attributes).

But you don’t use o_actor with the verbs Look and Examine? That’s right, in my opinion the you-
replies will do, even for other actors. It’s my design decision, but feel free to change it.

There's one other flag we have not seen before: f_bypass. This is also a common flag and it tells the
interpreter to bypass the visibility check for this subject. Remember from the examine verb that the
interpreter will only consider objects that the player can see? Sometimes we want the player to be

(c) 2016, 2017, 2018 Marnix van den Bos 10

able to refer to objects he cannot see. Suppose he enters a dark location and wants to turn on the
lamp in his inventory? We don't want a "You don't see a lamp here"-like response.

Our design decision is that all items in the player's inventory must be usable in darkness, so we set
f_bypass when he picks something up and we clear it when he drops something.

drop
The drop verb is similar to get. But it will sometimes be the case that we want to put things in other
things. To prevent us from having to code this functionality for each object we create default verb
code that will not print a default “You cannot …”message but that will handle the “put something in
something else” command. We must define a new common flag f_container that tells whether an
object can contain other objects.

Actions to put or drop things under/on/besides/… other objects must be handled by the objects
themselves. For these scenarios, the verb default code will print a rejection message. We could also
have decided to handle these actions in the verb code but for this tutorial we will only do the “in”
preposition.

Our drop verb, almostfinished

$VERB drop SYNONYM put
 "drop"
 printcr("What do you want to drop?")
 getsubject()

 "drop [o_subject]"
 move(o_subject, owner(o_actor))
 clearflag(o_subject.f_bypass)
 printcr("[o_subject]: dropped.")

 "drop [o_subject] in [o_spec]"
 if not(testflag(o_spec.f_container)) then
 printcr("[the] [o_spec] cannot contain things.")
 disagree() # exit
 endif
 if testflag(o_spec.f_locked) then
 printcr("[the] [o_spec] is locked.")
 else
 if not(testflag(o_spec.f_open)) then
 printcr("[[opening [the] [o_spec] first]")
 setflag(o_spec.f_open)
 clearflag(o_spec.f_opaque)
 endif
 clearflag(o_spec.f_bypass)
 move(o_spec, o_subject, in)
 printcr("[the] [o_subject] is now in [the] [o_spec].")

 "drop [o_subject] [prepos] [o_spec]"
 printcr("[the] [o_subject] is not something that can be put into [the] [o_spec].")

 DEFAULT

(c) 2016, 2017, 2018 Marnix van den Bos 11

 printcr("I only understood you as far as wanting to drop something.")
ENDVERB

As you see, dropping the subject is moving it to the object (or location) that contains the player.

The verb also checks if the container is locked or closed and will open the container automatically if
possible. Opening the container will also clear the common flag f_opaque so the player can see
what's in the container.

o_spec is the specifier wildcard.

We see that we have rules for “drop [o_subject] in [o_spec]” and “drop [o_subject] [prepos]
[o_spec]”. The rules are matched top to bottom, so it is important that the … in … rule is before the …
[prepos] … rule. If not, then ‘in’ would be caught by the ‘prepos’ rule and the ‘in’ rule would never be
executed.

We still forgot two things: handling the case where the user wants to drop a subject he is not
carrying and putting an object into itself. We will handle both situations in the prologue. And yes, for
the “get” verb we did not handle the getting-something-you-already-have scenario in the prologue.
But because this is a tutorial we want to show different ways of doing things and hence we show
how to handle the drop-something-you-don’t-have in the prologue.

Our final drop verb

$VERB drop SYNONYM put
 PROLOGUE
 if equal(o_subject, %none) then
 Agree()
 else
if not(owns(o_actor, o_subject)) then
 printcr(“But [o_actor] [o_actor.r_be] not holding [the] [o_subject].”)
 disagree()
 endif
 if not(equal(o_spec, %none) then
 if equal(o_subject, o_spec) then
 printcr("You cannot put something into itself.")
 endif
 endif
 endif # endifs at the end are not necessary

 "drop"
 printcr("What do you want to drop?")
 getsubject()

 "drop [o_subject]"
 move(o_subject, owner(o_actor))
 clearflag(o_subject.f_bypass)
 printcr("[o_subject]: dropped.")

 "drop [o_subject] in [o_spec]"
 if not(testflag(o_spec.f_container)) then

(c) 2016, 2017, 2018 Marnix van den Bos 12

 printcr("[the] [o_spec] cannot contain things.")
 disagree() # exit
 endif
 if testflag(o_spec.f_locked) then
 printcr("[the] [o_spec] is locked.")
 else
 if not(testflag(o_spec.f_open)) then
 printcr("[[opening [the] [o_spec] first]")
 setflag(o_spec.f_open)
 clearflag(o_spec.f_opaque)
 endif
 clearflag(o_spec.f_bypass)
 move(o_spec, o_subject, in)
 printcr("[the] [o_subject] is now in [the] [o_spec].")

 "drop [o_subject] [prepos] [o_spec]"
 printcr("[the] [o_subject] is not something that can be put into [the] [o_spec].")

 DEFAULT
 printcr("I only understood you as far as wanting to drop something.")
ENDVERB

As with to ‘get’ where we needed the r_have attribute, with ‘drop’ we need an r_be attribute to
store the actor’s correct conjugation for to be.

inventory
Inventory illustrates XVAN’s object oriented architecture. Each object in the player’s possession will
respond to the inventory command by printing its own description as we will see later in the story
file.

The verb prologue will print the “You are carrying:” message. In case the player is carrying nothing
(no object will react), the verb default code will print the “nothing, you are empty-handed.”
Message.

Our inventory verb

$VERB inventory SYNONYM i
 SCOPE player_only

 PROLOGUE
 printcr(“You are carrying:“)
 indent(2)

 EPILOGUE
 Indent(-2)

 DEFAULT
 Indent()
 printcr(“Nothing, you are empty-handed.”)
END_VERB

(c) 2016, 2017, 2018 Marnix van den Bos 13

Some new things here:

SCOPE player_only means that the user input is only offered to the player and the objects that are
contained in the player. Other scope values are:

 curr_loc (player’s current location and all contained objects). This is the default scope value;

 all_locs (every location and object in the game).

The indent function, when called with a parameter increases or decreases the indent level. When
called without a parameter the function prints the a number of spaces equal to the indent level.

The EPILOGUE is similar to the prologue, but is executed as the last item of processing the user input.
Here we use it to reset the indent level to its old value.

go
The actual functionality of the go verb is defined in the story file with the player object. The go
default code only prints the “you cannot go there” message.

Our go verb

$VERB go
 # do not remove this verb
 “go [dir]”
 “go to [dir]”
 printcr(“You can’t go that way.”)

 DEFAULT
 printcr(“I don’t understand that sentence.”)
END_VERB

What’s new here?

[dir] is the wildcard for an arbitrary direction. Whenever the user enters only a direction, the
interpreter will prefix it with the verb ‘go’, which is predefined by the compiler.

There are 2 command strings followed by 1 piece of code. This means that both commands will
execute the same code. So, both “go [dir]” and “go to [dir]” will print “You can’t go that way.” as a
default message when no objects reply to the command.

Directions
As the last activity of part 1 of the tutorial, we will define the directions that our story will
understand.

Any word can be used as a direction and there can be as many or as few as you want. Compass
directions, left, right, in, out, up, down, all are possible. Left and right are a bit tricky because they
require knowledge about the direction the player is facing.

The actual story map will defined in the story file. For each location we will indicate which direction
leads where.

(c) 2016, 2017, 2018 Marnix van den Bos 14

(c) 2016, 2017, 2018 Marnix van den Bos 15

For our tutorial we will use compass directions and up/down.

$DIRECTIONS
north SYNONYM n,
south SYNONYM s,
east SYNONYM e,
west SYNONYM w,
northeast SYNONYM ne,
northwest SYNONYM nw,
southeast SYNONYM se,
southwest SYNONYM sw,
up SYNONYM u,
down SYNONYM d

When printing a word that has synonyms, the interpreter will use the first word for printing. So,
advice is to not use the abbreviations as the first words.

End of part 1
This is the end of part 1 of the tutorial. Everything we did is in file part1-end.voc. This file is the
starting point for part 2 of the tutorial.

This file won’t compile to an XVAN game, because we have not made the story file yet. In part 2 and
part 3 we will create the story file.

(c) 2016, 2017, 2018 Marnix van den Bos 16

Part 2 – Basic things
Before we start working on our story we must define some basic stuff that we can reuse with other
stories. Things like:

 common descriptions;

 common flags;

 common attributes;

 common triggers;

 logging;

 save and restore functions (to store progress);

 regression testing;

 the player object;

 mechanism for starting the game;

 mechanism for moving the player between locations;

 looking around;

 scoring mechanism;

 verbose function;

 quit function.

At this point it is helpful to read sections “locations objects and timers” (2 pages) and “location and
object artifacts” (5 pages) from the XVAN Introduction document.

Inputs for this part of the tutorial are files part1-end.voc and part2-start.xvn

Common descriptions
Common descriptions are descriptions that each location and object has. This is the reason they can
be used with wildcards: it is guaranteed that they can be found at a later time when the wildcard is
linked to an actual object or location.

We will use the following common descriptions (apart from the predefined descriptions):

d_longdescr long location or object description;
d_shortdescr short object description;

We make the following design decisions:

 For locations, d_shortdescr always is the location name only.

(c) 2016, 2017, 2018 Marnix van den Bos 17

 Upon first visit of a location, the location's d_shortdescr and d_longdescr are printed;

 With following visits only d_shortdescr is printed;

 For an object, with each visit only d_shortdescr is printed;

 For objects the “examine” command prints d_longdescr;

 For locations the “examine” command acts as the “look” command (see further);

 We will also define a verbose() function to allow forced printing of long location descriptions
at all times.

Common flags
We will use the following common flags (apart from the predefined flags):

f_seenbefore to determine whether to print long or short description.

Common attributes
We will use the following common attributes (apart from the predefined attribute):

r_be conjugation of verb”to be” for location or object;
r_have conjugation of verb “to have” for location or object.

We must also define words for is, are, has and have in the vocabulary file. I chose to define them as
verbs so they can also be used in user input (e.g. "where is the toaster"). If you only want to use
them as attribute values for printing, they may have any word type.

Common triggers
We will use the following common triggers (apart from the predefined triggers):

t_i to print inventory
t_exa to examine

We make the following design decisions:

 When the player object enters a new location the predefined trigger t_entrance will be
executed for the new location and all its contained objects;

 When the player object wants to exit from a location the predefined trigger t_exit will be
executed for the current location and all its contained objects. If any of them responds with
disagree() the player will not be allowed to leave the location;

We will now define the common triggers.

t_i
This trigger was already mentioned in part 1 of the tutorial. The inventory verb will print the "You are
carrying" message and each object will print its description.

Our t_i common trigger

(c) 2016, 2017, 2018 Marnix van den Bos 18

t_i
 if owns(o_player, %this) then
 indent() # indent level was set by the verb prologue
 printcr("[a] [this]")
 else
 nomatch()

Because this is a common trigger, each object and location will now have this trigger (you don’t have
to worry about memory space, the code is only stored once). In case an object needs to print a
different message (e.g. add text like "being worn") it suffices to redefine the trigger as a local trigger
with the same name within the object body. Local triggers take preference over common triggers
with the same name.

There's something new, here. The function nomatch() generates the third possible return code for a
trigger (the others are agree() and disagree() as explained in part 1). With nomatch() a location or
object tells the interpreter "forget that I had a match for this input". But why do we need nomatch(),
we can also print nothing and return agree(), right? Wrong. If we return agree(), the interpreter
would know there had been a match and no verb default code would be executed. So if the player
carried nothing and all objects in the location would return agree(), the default verb text "nothing,
you are empty-handed" would not be printed.

Nomatch() is quite powerful. If you redefine a common trigger and the local copy returns nomatch().
the interpreter will execute the common trigger as well. I use this sometimes to let the object do a
quick test and if everything is ok, execute the common trigger after all.

t_exa
Our design decision states that we should print d_longdescr.

Our t_exa common trigger

t_exa
 printcr(d_longdescr)
 setflag(f_seenbefore)

the interpreter will know for which object or location the common trigger is executed, so it can
locate the right description and flag. We could also have said printcr(%this.d_longdescr) and
setflag(%this.f_seenbefore).

t_entrance
As per our design decision, t_entrance is triggered when the player object enters a new location. We
want it to:

 print information about the location (long or short description)

 print information about the objects in the location

 print information about objects in/on/under/.. other objects.

Here we go, comments added for clarification.

t_entrance

(c) 2016, 2017, 2018 Marnix van den Bos 19

 if not(islit(o_player)) then
 printcr("It is pitch black.")
 disagree() # ready, exit
 endif
 if equal(%this, l_location) then
 # l_location is wildcard for the current location
 printcr(d_shortdescr) # print location name
 if not(testflag(f_seenbefore)) then
 # first visit
 setflag(f_seenbefore)
 printcr(d_longdescr)
 endif
 else
 # it´s not the current location but an object in the location
 if cansee(o_player, %this) then
 if owns(owner(o_player), %this) then
 # object is at the same containment level as player
 setflag(f_seenbefore)
 printcr(d_shortdescr)
 else
 if not(owns(o_player, %this, 0)) then
 # it´s not (in) some object the player carries (0 means all levels of containment)
 setflag(f_seenbefore)
 print("There is [a] [this] [r_preposition] [the] ")
 print(owner(%this))
 printcr(".")
 endif
 endif
 endif
 endif
 # all the endifs are not necessary at the end of a trigger.

So, what t_entrance does:

 check whether it's dark;

 check whether it's executed for the location (as opposed to an object in the location);

 check whether it's executed for an object in the location that the player can see;

 check whether this object is contained in another object not carried by the player (if the
object is carried by the player, we don’t want to mention it).

Note: make sure to close the current IF-statement with an ENDIF when starting a new if statement. If
you find that parts of your trigger should be executed but are not, you may have forgotten an ENDIF
statement. If you forget the first ENDIF (line 5), nothing of the trigger will be executed when the
player is lit because all lines will be considered part of the if not(islit(o_player)) branch.

In case the common t_entrance should not be executed for an object, define an empty t_entrance
trigger locally with the object. Empty as in that it only contains an agree() function. We do this for
example for the player object.

(c) 2016, 2017, 2018 Marnix van den Bos 20

t_exit
As per our design decision, t_exit is triggered when the player object exits the current location. We
want it to:

 check whether the player object is free to go.

 if not, it must return disagree()

As leaving a location is game specific, in our basic definitions the t_exit trigger will always return
agree().

t_exit
 agree()

But how does it work then? We'll come to that when we define the player object, but here's a heads-
up: XVAN has a function called exit(par). This function will call t_exit for par and all its contained
objects. If one of the t_exit triggers returns disagree(), the exit function will return false and we know
there's some object not allowing the player to exit the current location. Likewise, there is also an
entrance(par) function that calls all t_entrance triggers.

logging
To log your game session, XVAN has the built-in transcript() function. This function copies user input
and the game's response to a file called transcript.txt in the directory that the game is running from.
Calling transcript for the second time will turn off logging. We will define transcriptas a verb in the
vocabulary file so it can be used for all games.

VERB transcript
 "transcript"
 transcript()

 DEFAULT
 printcr(“use ‘transcript’ to log your session.”)
ENDVERB

save and restore functions
To store and load game progress, XVAN has functions save() and restore(). The save() function stores
the current story progress in a file called save.dat in the directory that the game is running from. The
restore() functions scans the directory for save.dat and loads it.

In order to use the functions, we create verbs “save” and “restore” in the vocabulary file. Restoring a
game is pretty straightforward and always allowed, so we will define the restore functionality in the
vocabulary file. The code for saving will be a local trigger in the player object. Why? Well, there may
be game specific situations when we do not allow the user to save. For example in a maze or to
prevent trial-and-error guessing when solving a puzzle.

$VERB save
 # define your save functionality in the story file
 DEFAULT
 printcr(“Use ‘save’ to save your progress.”)

(c) 2016, 2017, 2018 Marnix van den Bos 21

ENDVERB

$VERB restore
 "restore"
 restore()
 printcr("restored.")

 DEFAULT
 printcr(“use ‘restore’ to restore a previously saved game.”)
ENDVERB

quit function

$VERB quit SYNONYM q
 "quit"
 print("Do you really want to quit? ")
 if yesno() then
 quit()

 DEFAULT
 printcr("use 'quit' to leave the game.")
ENDVERB

The yesno() function requires the user to enter "yes", "no", "y" or "n". It is not case sensitive.

o_player object
The player object is mandatory in each XVAN story file.

Before we start, the player object in part2-start.xvn looks like this:

$OBJECT o_player
 # The o_player object is predefined and represents the human player.

 DESCRIPTIONS
 d_sys

 CONTAINED

 FLAGS

 ATTRIBUTES

 TRIGGERS

END_OBJ

For starters, we will:

 set the system descriptions (d_sys) to “you” and "me";

 set common attribute r_be to “are”;

 set common attribute r_have to "have";

(c) 2016, 2017, 2018 Marnix van den Bos 22

 define the nouns"you"and "me" and the "are" verb in the vocabulary file;

 override common triggers t_entrance and t_exit with local ones that do nothing.

(c) 2016, 2017, 2018 Marnix van den Bos 23

$OBJECT o_player
 # The o_player object is predefined and represents the human player.

 DESCRIPTIONS
 d_sys “You”, "me"

 CONTAINED # don’t know where the player starts until we have the game map

 FLAGS

 ATTRIBUTES
 r_be = are # you are
 r_have = have # you have

 TRIGGERS
 t_entrance
 agree()

 t_exit
 agree()

END_OBJ

Next, we will define the following basic stuff in the player object:

 starting the game;

 moving the player between locations;

 looking around;

 keeping the score;

 save and restore commands to store progress;

 logging;

 verbose function.

starting the game
If we do nothing, the game will just start with a “> “ prompt. However, we want to print some
introductory text when the game starts. XVAN has no default starting mechanism, so we make our
own. We define a timer m_init that reaches its threshold when the game starts.

m_init
 init 0
 step 1
 direction up
 interval 1

(c) 2016, 2017, 2018 Marnix van den Bos 24

 state go
 trigger_at 1
 execute o_player.t_init

With the player object, we will define a trigger t_init and a description d_init. The trigger prints the
description.

$OBJECT o_player
 # The o_player object is predefined and represents the human player.

 DESCRIPTIONS
 d_sys “You”, "me"
 d_init “*** XVAN tutorial ***”

 CONTAINED # don’t know where the player starts until we have the game map

 FLAGS

 ATTRIBUTES
 r_be = are # you are
 r_have = have # you have

 TRIGGERS
 t_entrance
 agree()

 t_exit
 agree()

 t_init
 printcr(d_init)
 printcr("")
 entrance(owner(o_player))

END_OBJ

After starting the game, timer m_init expires and triggers o_player.t_init. This will print d_init, our
opening message and describe the player's initial location.

Moving the player around
XVAN has no default mechanism to let the player move between locations. We will create our own
mechanism. We will use several of XVAN’s built-in functions to implement moving around. XVAN’s
built in functions are described in detail in a separate document.

In order to move around the player we must:

 make the player object catch user input about moving around;

 check if the direction indicated in the user input is a valid direction;

 check with all objects in scope whether the player may leave;

(c) 2016, 2017, 2018 Marnix van den Bos 25

 move the player object to the new location and execute the t_entrance triggers.

(c) 2016, 2017, 2018 Marnix van den Bos 26

This is our new player object

$OBJECT o_player
 # The o_player object is predefined and represents the human player.

 DESCRIPTIONS
 d_sys “You”, "me"
 d_init “*** XVAN tutorial ***”

 CONTAINED # don’t know where the player starts until we have the game map

 FLAGS

 ATTRIBUTES
 r_be = are # you are
 r_have = have # you have

 TRIGGERS
"[dir]" -> t_move
 “go to [dir]” -> t_move

 t_entrance
 agree()

 t_exit
 agree()

 t_init
 printcr(d_init)
 printcr("")
 entrance(owner(o_player))

 t_move
 if valdir(l_location, %dir) then
 # it's a valid direction
 if exit(l_location) then
 # no object objects to the player leaving the room
 move(o_player, %dir) # move updates current location
 entrance(l_location)
 endif
 else
 nomatch() # let other objects or verb default code react.
 endif
 agree()

END_OBJ

What do we see here? Right below the TRIGGERS keyword we see two possible user inputs that will
fire the t_move trigger. In the t_move trigger, the valdir() function checks if the direction is a valid
direction. If not, the t_move trigger returns nomatch(). In case none of the other objects react, the
default verb code will be executed which will print “you can’t go that way”.

(c) 2016, 2017, 2018 Marnix van den Bos 27

If the direction is valid, the exit() function will execute the t_exit triggers from all objects in the
current location (and from the current location itself). If all return agree(), then the player object will
be moved in the direction indicated by the user input. Finally, for the new location and all its
contained objects, the t_entrance trigger will be executed.

You may have noted that move() accepts different kinds of parameters. With the verbs take and
drop, we used move(object1, object2) which moved object2 in object1. With t_move we used
move(object, direction) which moved object to the location that is reached by going into the
direction. Possible parameters combinations are listed in the function description document.

looking around
To enable the player to look around we define trigger t_look locally with the player object.

This trigger will call the entrance() function for the player’s location. This means that for the player’s
location and each containing object, the t_entrance trigger will be called.

The player’s t_look trigger

t_look
 if equal(owner(o_player, l_location)) then
 clearflag(l_location.f_seenbefore)
 entrance(l_location)
 else
 # the player is in some object. Print this information
 print(“[[[prepos] [the] “)
 print(owner(o_player)
 print(“].”)
 clearflag(owner(o_player).f_seenbefore)
entrance(owner(o_player))

Because we (ab)use the entrance() function in our look command, we must clear the f_seenbefore
flag before calling the entrance() function. The reason is that the t_entrance trigger will check for
f_seenbefore and if it's set it will print the short description.

Why are there 3 ‘[‘ in the print statement? We want to print something like “[in the boat]”. However,
for the compiler, a ‘[‘ in a string means that a parameter will follow. We tell the compiler to print one
‘[‘ by entering ‘[[‘. So, ‘[[[‘ tells the compiler to print a ‘[‘ and that a parameter will follow.

Note that just defining t_look does not mean that the t_look trigger will be executed when the user
enters “look”. We must yet link the trigger to a user input. This is done at the beginning of the
TRIGGERS section in the player object:

“look” -> t_look

Now the interpreter knows that whenever the user enters “look”, it must execute the t_look trigger.

keeping the score
To keep track of the score, we define a local attribute r_score with the player object. We also define
a verb “score” in the vocabulary and a local trigger t_score for the player object that prints the score.

(c) 2016, 2017, 2018 Marnix van den Bos 28

save function
We create a local trigger t_save with the player object. Additionally, we create a local flag f_no_save
with the player object. The t_save trigger will check the flag and if it is set, it will not save game
progress. This can be used to prevent cheating. For example, when the player enters a maze, an
object may set the o_player.f_no_save flag and thus prevent the player from saving progress while
he is in de maze.

verbose function
By invoking the verbose functionality, the t_entrance triggers will always print the long location
descriptions (d_longdescr). We define the verb ‘verbose’ in the vocabulary file and a local flag
f_verbose with the player object. Next we change the common t_entrance trigger so it will test for
the f_verbose flag before printing the location description.

This is what we have right now:

In the vocabulary file we’ve added:

$VERB score
 DEFAULT
 printcr(“Use ‘score’ to get information about your score.”)
ENDVERB

VERB verbose
 DEFAULT
 printcr(“use ‘verbose’ to toggle long room descriptions.”)
ENDVERB

‘score’ and ‘save’ will be handled by the player object. All other input with these verbs will print the
default message.

Our player object with all the basic stuff we wanted:

$OBJECT o_player
 # The o_player object is predefined and represents the human player.

 DESCRIPTIONS
 d_sys “You”, "me"
 d_init “*** XVAN tutorial ***”

 CONTAINED # don’t know where the player starts until we have the game map

 FLAGS
f_no_save = 0
 f_verbose = 0

 ATTRIBUTES
 r_be = are # you are
 r_have = have # you have

 TRIGGERS
 "[dir]" -> t_move
 “go to [dir]” -> t_move

(c) 2016, 2017, 2018 Marnix van den Bos 29

 “look” -> t_look
“score” -> t_score
 “save” -> t_save
 “verbose” -> t_verbose

 t_entrance
 agree()

 t_exit
 agree()

 t_init
 printcr(d_init)
 printcr("")
 entrance(owner(o_player))

 t_look
 if equal(owner(o_player), l_location) then
 clearflag(l_location.f_seenbefore)
 entrance(l_location)
 else
 # the player is in some object. Print this information
 print("[[[prepos] [the] ")
 print(owner(o_player))
 printcr("].")
 endif
 if cansee(o_player, owner(owner(o_player))) then
 entrance(owner(owner(o_player)))
 else
 entrance(owner(o_player))

 t_move
 if valdir(l_location, %dir) then
 # it's a valid direction
 if exit(l_location) then
 # no object objects to the player leaving the room
 move(o_player, %dir) # move updates current location
 entrance(l_location)
 endif
 else
 nomatch() # let other objects or verb default code react.
 endif
 agree()

 t_score
 printcr(“Your score is [r_score] points.”)

 t_save
 if testflag(f_no_save) then
 printcr(“Saving at this point would be like cheating.”)
 else

(c) 2016, 2017, 2018 Marnix van den Bos 30

 save()
 printcr(“saved.”)

 t_verbose
 if testflag(f_verbose) then
 clearflag(f_verbose)
 printcr(“Verbose mode turned off.”)
 else
 setflag(f_verbose)
 printcr(“Verbose mode turned on.”)

END_OBJ

And our common t_entrance trigger, adapted for verbose functionality:

t_entrance
 if not(islit(o_player)) then
 printcr("It is pitch black.")
 disagree() # ready, exit
 endif
 if equal(%this, l_location) then
 # l_location is wildcard for the current location
 printcr(d_shortdescr)
 if not(testflag(f_seenbefore)) or testflag(o_player.f_verbose) then
 # first visit or verbose mode
 setflag(f_seenbefore)
 printcr(d_longdescr)
 endif
 else
 # it´s not the current location but an object in the location
 if cansee(o_player, %this) then
 if owns(owner(o_player), %this) then
 # object is at the same containment level as player
 setflag(f_seenbefore)
 printcr(d_shortdescr)
 else
 if not(owns(o_player, %this, 0)) then
 # it´s not (in) some object the player carries (0 means all levels of containment)
 setflag(f_seenbefore)
 print("There is [a] [this] [r_preposition] [the] ")
 print(owner(%this))
 printcr(".")
 endif
 endif
 endif
 endif
 # all the endifs are not necessary at the end of a trigger.

(c) 2016, 2017, 2018 Marnix van den Bos 31

End of part 2
This ends part 2 of the tutorial. We’ve finished our preliminary work that we can use as a starting
pointfor future stories.

Everything we did is in files part2-end.voc and part2-end.xvn. These files are the starting point for
part 3 of the tutorial where we will write our sample story.

The files we created in part 2 will not compile to an XVAN story. This is because part2-end.xvn is not
yet complete. By the end of the next part 3 we will have a playable story.

(c) 2016, 2017, 2018 Marnix van den Bos 32

Part 3 – a sample story
Now that we’ve defined a vocabulary and took care of some basic requirements, we are ready to
develop a sample story. Our purpose is not to create an award winning story, but to illustrate how to
make locations, objects and timers and howthey interact.

We won't make a full size adventure game (I'm not a great author anyway). It will be sort of a first
level where you are in a house and must make your way to the cellar. The tutorial game will end
when you descend the stairs to the cellar.

The map:

The locations
There are 11 locations. We will enter them in the story file with their long descriptions, short
descriptions and directions. Actually, there are 12, we reserve on location, l_storage, to store objects
that are removed from play. l_storage is not accessible to the player.

Some locations require non-standard handling of certain directions:

(c) 2016, 2017, 2018 Marnix van den Bos 33

 when going east from the living room, we want to go back to the location we came from,
south hallway or north hallway (we use an attribute to remember where we came from);

 going east from north hallway is not possible;

 going north from kitchen to garden is not possible when the kitchen door is locked;

 when the user has not examined the loose step on halfway stairs, going down from halfway
stairs will lead to south hallway. After the user examines the loose step, going down will lead
to the closet and south will lead to the south hallway.

The locations’ code is below. With each location, we will explain new functionality, if any. Some
locations also refer to objects, this code will be discussed with the object descriptions.

south hallway

$LOCATION l_hallway_south
 DESCRIPTIONS
 d_sys "the south hallway"

 d_longdescr "You are in the south hallway. To the west is a passage to the /
living room. To the east are stairs leading up. The hallway /
continues to the north."

 d_shortdescr "South hallway"

 EXITS
 n -> l_hallway_north
 w -> l_living_room
 u -> l_halfway
 e -> l_halfway

 TRIGGERS
 "examine [l_hallway_south]" -> o_player.t_look
 "west" -> t_west
 “north” -> t_north

 t_entrance
 move(o_stairs, %this) # must be able to refer to stairs
 nomatch()

 t_west
 # remember where we came from
 l_living_room.r_back = %this
 nomatch()

 t_north
 # must be able to refer to the closet door
 o_closet_door.r_direction = east
 o_closet_door.r_access = o_closet_door.d_closet
 move(o_closet_door, l_hallway_north)
 nomatch()

(c) 2016, 2017, 2018 Marnix van den Bos 34

END_LOC

Description d_sys is the system description. It is a predefined common description and is used by the
parser to map the user input to objects and locations.
To elaborate a bit, the user input is translated from a text string to separate words. The words are
looked up in XVAN's word table and replaced by their word id (a number). Next, groups of word ids
are held against the location and object tables and mapped on location or object ids. To map the
word ids to object/location ids the parser compares them to the word ids from d_sys. As an example,
the combination of two word ids for "south" and "hallway" will be mapped to one location id for
l_hallway_south. When an object or location has no d_sys description, it cannot be referred to by the
user.

Do not forget to include the article in the system description (d_sys). The compiler will strip it and
store it separately. Whenever you include [the] or [a] wildcards in a string followed by a location or
an object, the interpreter will check whether it has to print an article or not. If you did not include the
article in the system description it won’t print it. If you did include the article in d_sys but don’t use
[the] or [a] in a string, the article will not be printed either.
A slash ‘/’ in a string tells the compiler to skip the next <cr> and spaces. It is used for formatting long
text strings so they are better readable in the source file.

It may seem a bit unusual to move around the stairs (in trigger t_entrance) but this is just how we
model the world. There are several locations from which the stairs are accessible. We could have
created individual stair objects in different locations but that would require more code to keep them
in sync. The net effect for the person playing the story will be the same and this makes our coding
effort easier.

Trigger t_north is used to move around the closet door. It’s like moving the stairs but a bit more
complicated and will be explained with the closet door object.

(c) 2016, 2017, 2018 Marnix van den Bos 35

north hallway

$LOCATION l_hallway_north
 DESCRIPTIONS
 d_sys "the north hallway"

 d_longdescr "You are in the north hallway. To the west is a passage to the /
 living room. The hallway continues north to the kitchen."

 d_shortdescr "North hallway"

 EXITS
 n -> l_kitchen
 s -> l_hallway_south
 w -> l_living_room

 TRIGGERS
 "examine [l_hallway_north]" -> o_player.t_look
 "west" -> t_west

 t_west
 # remember where we came from
 l_living_room.r_back = %this
 nomatch()

END_LOC

living room

$LOCATION l_living_room
 DESCRIPTIONS
 d_sys "the living room"

 d_longdescr "This is the living room. It's completely abandoned. There is an /
 exit to the hallway to the east."

 d_shortdescr "Living room"

 EXITS
 # no exits

 ATTRIBUTES
 r_back = l_hallway_south

 TRIGGERS
 "examine [l_living_room]" -> o_player.t_look
 "[dir]" -> t_go

 t_go
 if equal(%dir, east) then
 move(o_player, r_back)

(c) 2016, 2017, 2018 Marnix van den Bos 36

 entrance(r_back)
 disagree()
 else
 nomatch()
 endif

END_LOC

We see that the living room location has a “%dir” trigger, as does the player object. We don’t know
the exact order in which objects that are in scope get the user input, but it is ensured that a
containing object gets it before its contained objects do. So the location always is the first to get the
user input. In our case, because we know the location gets to process the %dir command first, our
setup with the r_back attribute will work. In case the user enters any other direction than East, the
nomatch() will make the player object’s t_move trigger to further process the user input.

(c) 2016, 2017, 2018 Marnix van den Bos 37

kitchen

$LOCATION l_kitchen
 DESCRIPTIONS
 d_sys "the kitchen"
 d_longdescr "This is the kitchen. There is not much here. The /

hallway is to the south."
 d_shortdescr "Kitchen"

 EXITS
 s -> l_hallway_north

 TRIGGERS
 "examine [l_kitchen]" -> o_player.t_look
 "n" -> t_north
 “s” -> t_south

 t_entrance
 printcr(d_shortdescr)
 if not(testflag(f_seenbefore) AND not(testflag(o_player.f_verbose))) then
 printcr(d_longdescr)
 endif
 move(o_kitchen_door, %this) # must be able to refer to the door

 t_north
 if testflag(o_kitchen_door.f_locked) then
 printcr("The kitchen door is locked.")
 else
 if not(testflag(o_kitchen_door.f_open)) then
 printcr("[[opening the kitchen door first]")
 setflag(o_kitchen_door.f_open)
 newexit(l_kitchen, north, l_garden)
 endif
 move(o_player, n) # also updates current location
 entrance(l_location)
 endif
 disagree() # prevent o_player.t_move to execute the "n" command

 t_south
 # must be able to refer to the closet door
 o_closet_door.r_direction = east
 o_closet_door.r_access = o_closet_door.d_closet
 move(o_closet_door, l_hallway_north)
 nomatch()

END_LOC

The valdir() function checks for a valid direction (exit from the current location).

(c) 2016, 2017, 2018 Marnix van den Bos 38

When the user wants to go north, the t_north trigger is fired. If the door is locked, we print a
rejection message. If it is unlocked but closed, we don't print a "the door is closed" rejection
message, but open the door for the player. Note the last disagree(). It tells the interpreter to stop
and not offer the user's command to other objects. If we forget it, the command will also be sent to
the o_player object who will execute it. Since at that moment we already are in the garden (t_north
has already moved the player object to the north), the player will finally end up in the shed.

Trigger t_south is used to move around the closet door. It’s like moving the stairs but a bit more
complicated and will be explained with the closet door object..

closet

$LOCATION l_closet
 DESCRIPTIONS
 d_sys "the closet"

 d_longdescr "You are in a dark closet below the staircase. To the west is /
the closet door, which is closed."

 d_shortdescr "Closet"

 EXITS
 u -> l_halfway
 d -> l_cellar

 TRIGGERS
 "examine [l_closet]" -> o_player.t_look
 "down" -> t_down

 t_entrance
 printcr(d_shortdescr)
 printcr(d_longdescr)
 if not(testflag(o_trapdoor.f_hidden)) then
 printcr("Visible exits are up and down.")
 else
 printcr("The only visible exit is up.")
 endif

 t_down
 if testflag(o_trapdoor.f_hidden) then
 printcr("The carpet is blocking your way down.")
 disagree()
 else
 if not(testflag(o_trapdoor.f_open)) then
 printcr("The trapdoor is closed.")
 disagree()
 else
 nomatch() # let o_player.t_move handle this

END_LOC

(c) 2016, 2017, 2018 Marnix van den Bos 39

Flag f_hidden is a predefined common flag. When set, the object or location is treated by the parser
as not visible, so the player won't be able to refer to it.

cellar

$LOCATION l_cellar
 DESCRIPTIONS
 d_sys " the cellar"

 d_burning "You walk down the stairs into the cellar. Down below you see /
 the red glow of a fire. As you walk down further, it gets hotter /
 and hotter. You realize you will be fried if you continue and you /
 hurry back up the stairs."

 d_not_burning "There is still a lot of smoke in the cellar, but through the /
 hazes you can make out an old workbench to the east and a door /
 to the north."

 d_shortdescr "Cellar"

 d_end "
/ ***** this is the end of the tutorial *****
/ “

EXITS
 up -> l_closet

 FLAGS
 f_tried_before = 0

 TRIGGERS

 "examine [l_cellar]" -> o_player.t_look

 t_entrance
 if testflag(o_flames.f_extinguished) then
 printcr(d_not_burning)
 printcr(d_end)
 quit()
 else
 if not(testflag(f_tried_before)) then
 setflag(f_tried_before)
 printcr(d_burning)
 else
 printcr("There's flames down there, remember?")
 endif
 move(o_player, u)
 endif
 agree()

END_LOC

(c) 2016, 2017, 2018 Marnix van den Bos 40

halfway stairs

$LOCATION l_halfway
 DESCRIPTIONS
 d_sys "halfway"

 d_longdescr "You are now halfway up the stairs. The stairs continue up /
to the north and down to the south."

 d_shortdescr "Halfway stairs"

 d_up_closed "When you walk further up the stairs one of the steps makes /
a hollow sound. You try to pinpoint it but get no further /
than that it is somewhere in the upper half of the stairs.

/ "

 d_up_open "You carefully step over step 11, so you don't fall down /
into the closet.

/ "

 EXITS
 n -> l_upstairs
 u -> l_upstairs
 s -> l_hallway_south
 d -> l_hallway_south

 TRIGGERS
 "examine [l_halfway]" -> o_stairs.t_exa
 "up" -> t_up
 "north" -> t_up
 “down” -> t_down

 t_entrance
 print(d_longdescr)
 move(o_stairs, %this) # must be able to refer to stairs
 agree()

 t_up
 if testflag(o_button.f_pressed) then
 # step 11 is open
 printcr(d_up_open)
 else
 printcr(d_up_closed)

 t_down
 # must be able to refer to the closet door
 o_closet_door.r_direction = west
 o_closet_door.r_access = o_closet_door.d_hallway
 move(o_closet_door, l_closet)
 nomatch()

END_LOC

(c) 2016, 2017, 2018 Marnix van den Bos 41

Location halfway stairs has its own local t_entrance trigger, because we must move the stairs object
to this location when the player enters. If we don’t do this, then the user won’t be able to refer to
the stairs.

Trigger t_down is used to move around the closet door. It’s like moving the stairs but a bit more
complicated and will be explained with the closet door object..

upstairs

$LOCATION l_upstairs
 DESCRIPTIONS
 d_sys "upstairs"

 d_longdescr "You are upstairs. Behind you, the stairs lead down. There /
is an exit to the west."

 d_shortdescr "Upstairs"

 d_down_closed "When you walk down, one of the steps makes a hollow sound. /
You try to pinpoint it but get no further than that it is /
at the top half of the stairs.

/ "

 d_down_open "You carefully step over step 11, so you don't fall down /
 into the closet.

/ "

 EXITS
 s -> l_halfway
 d -> l_halfway
 w -> l_bedroom

 TRIGGERS
 "examine [l_upstairs]" -> o_player.t_look
 "down" -> t_down
 "south" -> t_down

 t_entrance
 move(o_stairs, %this) # must be able to refer to stairs
 nomatch()

 t_down
 if testflag(o_button.f_pressed) then
 # step 11 is open
 printcr(d_down_open)
 else
 printcr(d_down_closed)

END_LOC

(c) 2016, 2017, 2018 Marnix van den Bos 42

Again, we move the stairs object in a local t_entrance trigger because the player must be able to
refer to the stairs. The local t_entrance trigger returns nomatch(), so the common t_entrance trigger
will be executed as well.

bedroom

$LOCATION l_bedroom
 DESCRIPTIONS
 d_sys "the bedroom"

 d_longdescr "This location used to be a bedroom a long time ago. But /
now, there is nothing there. All furniture has been /
removed."

 d_shortdescr "Bedroom"

 d_exa "Mounted to the west wall are a water tap and a sink."

 EXITS
 e -> l_upstairs

 TRIGGERS
 "examine [l_bedroom]" -> o_player.t_look

 t_entrance
 printcr(d_shortdescr)
 if not(testflag(f_seenbefore)) or testflag(o_player.f_verbose) then
 # first visit or verbose mode
 setflag(f_seenbefore)
 printcr(d_longdescr)
 endif

END_LOC

(c) 2016, 2017, 2018 Marnix van den Bos 43

garden

$LOCATION l_garden
 DESCRIPTIONS
 d_sys "the garden", "the hedges", "the hedge"

 d_longdescr "You are in the garden at the back of the house. East and west /
 there are hedges. To the north is a garden shed."

 d_shortdescr "garden"

 EXITS
 s -> l_kitchen
 n -> l_shed

 TRIGGERS
 "examine [l_garden]" -> o_player.t_look

 t_entrance
 printcr(d_shortdescr)
 if not(testflag(f_seenbefore) AND not(testflag(o_player.f_verbose))) then
 printcr(d_longdescr)
 endif
 move(o_kitchen_door, %this) # must be able to refer to the door

END_LOC

The garden is also described as the hedge and hedges. When we use [l_garden] in a string, the
interpreter will always print it as “garden”, even if the user referred to it as hedge. If we want the
interpreter to print the system description that the player used last, then we must set the predefined
flag f_swap. Printing l_garden.d_sys will always print the first system description, regardless of
f_swap.

(c) 2016, 2017, 2018 Marnix van den Bos 44

shed

$LOCATION l_shed
 DESCRIPTIONS
 d_sys "the garden shed"

 d_longdescr "You are now in the garden shed. The shed hasn't been cleaned /
 for a long time. Maybe never. On the walls you see the nails /
 that were used to hang the garden utensils to. Almost all of /
 them are gone now."

 d_shortdescr "Garden shed"

 EXITS
 s -> l_garden

 TRIGGERS
 "examine [l_shed]" -> o_player.t_look

END_LOC

Why is the shed a location and not an object in the garden? That’s just a design choice, it could have
been an object as well. Making it an object in the gardenis a bit more work though, because all user
input will then be offered to the garden as well and we may have to write extra code for t_entrance
and to move around (e.g. when in the shed object, “s” will take us to the kitchen).

the objects
Now that we’ve got the map, let’s take a look at the objects.

We have the following objects:

 player

 nst (no such thing)

 kitchen door

 kitchen window

 toaster

 key hole

 rusty key

 glass fragment

 hacksaw

 stairs

 steps

 button (on stairs)

 closet door

 floor (in closet)

 carpet

 trapdoor

 drain pipe in bedroom

 drain pipe in closet

(c) 2016, 2017, 2018 Marnix van den Bos 45

 flames

 water tap

 water

 sink

Before going into the object descriptions, we’ll briefly describe the plot of this tutorial game:

 go to the kitchen

 get the toaster and throw it through the window

 look through the kitchen door and notice the key on the outside;

 open the kitchen door

 go inside the shed and get the hacksaw

 go back into the kitchen and get the window fragment

 go to the stairs and find the button near step 11

 move the step and go down into the closet

 cut the carpet with the fragment

 open the trapdoor and see the flames

 cut the drain pipe with the hacksaw

 go up to the bedroom and open the water tap

 go back into the closet and see that the flames are extinguished by the water

 enter the cellar

 end of first level

In the next sections we’ll describe the objects, list the code and clarify where necessary.

player
We already addressed the player object in section 2 of the tutorial.

nst
o_nst is the ‘no-such-thing’ object. It’s predefined by the compiler and must be in de story file. It is
used with disambiguation rules as explained in part 5 of this tutorial. We’ll leave it for now.

kitchen door
Is in the kitchen and leads to the garden. The door is locked and the key is in the key hole on the
other side of the door. In the door is a window. The window and key hole are also defined as objects
with their own t_entrance triggers.

(c) 2016, 2017, 2018 Marnix van den Bos 46

It was a design decision to not mention the window in the door descriptions, because the window
must be broken at some point which would result in outdated descriptions. It is better to let the
window object handle this itself.

(c) 2016, 2017, 2018 Marnix van den Bos 47

$OBJECT o_kitchen_door
 DESCRIPTIONS
 d_sys "the kitchen door"

 d_longdescr "The door is made of wood; it gives access to the garden."

 d_longdescr1 "The door is made of wood; it leads back into the kitchen."

 d_shortdescr "To the north is a door that leads to the garden."

 d_shortdescr1 "To the south is a door that leads to the kitchen."

 d_no_window "In the upper half of the door is an opening where /
 a window used to be "

 CONTAINED in l_kitchen

 FLAGS
 f_openable = 1
 f_lockable = 1
 f_locked = 1

 TRIGGERS
 "examine [o_kitchen_door]" -> t_exa
 "look through [o_kitchen_door]" -> o_kitchen_window.t_look_through
 "unlock [o_kitchen_door] with [o_rusty_key]" -> t_unlock
 "turn [o_rusty_key]" -> t_unlock
 "open [o_kitchen_door]" -> t_open
 "close [o_kitchen_door]" -> t_close

 t_entrance
 if owns(l_kitchen, %this) then
 printcr(d_shortdescr)
 else
 printcr(d_shortdescr1)

 t_exa
 if owns(l_kitchen, %this) then
 print(d_longdescr)
 else
 print(d_longdescr1)
 endif
 if testflag(f_open) then
 print(" The door is open. ")
 else print(" The door is closed. ")
 endif
 # print info about window and keyhole
 if testflag(o_kitchen_window.f_broken) then
 print(d_no_window)
 else
 print(o_kitchen_window.d_shortdescr)

(c) 2016, 2017, 2018 Marnix van den Bos 48

 endif
 printcr(o_keyhole.d_shortdescr)
 contents(o_keyhole)

 t_unlock
 if not(owns(o_player, o_rusty_key)) and not(owns(o_keyhole, o_rusty_key)) then
 printcr("[[picking up the rusty key first]")
 move(o_rusty_key, o_player)
 endif
 # verb prologue will check if already unlocked
 if not(owns(o_keyhole, o_rusty_key)) then
 printcr("[[putting the rusty key in the keyhole]")
 endif
 printcr("Ok, the kitchen door is now unlocked.")
 clearflag(f_locked)

 t_open
 # test for already open is done by verb prologue
 if not(testflag(f_locked)) then
 printcr("Ok, the kitchen door is now open")
 setflag(f_open)
 newexit(l_kitchen, north, l_garden)
 else
 printcr("The door seems to be locked.")

 t_close
 # test for already closed is done by verb prologue
 printcr("Ok, the kitchen door is now closed.")
 clearflag(f_open)
 blockexit(l_kitchen, n)

END_OBJ

To create and delete exits we use functions newexit() and blockexit().

For this object, we also need verbs "unlock" and "open". And while we're at it, we will create "lock"
and " close" as well.
With these verbs we test as many general things (already open/closed/locked/unlocked) in the verb
prologue, so we don't have to repeat the same tests in the objects. The general tests do require
some additional common flags: f_openable, f_open, f_lockable, f_locked.

verb unlock
$VERB unlock
 PROLOGUE
 if not(equal(o_subject, %none)) then
 if not(testflag(o_subject.f_lockable)) then
 printcr("[the] [o_subject] is not something that can be unlocked.")
 disagree()
 else
 if not(testflag(o_subject.f_locked)) then
 printcr("But [the] [o_subject] [o_subject.r_be] not locked.")

(c) 2016, 2017, 2018 Marnix van den Bos 49

 disagree()
 endif
 endif
 endif # endifs at the end of code may be omitted

 "unlock"
 printcr("What do you want to unlock?")
 getsubject()

 "unlock [o_subject]"
 printcr("How do you want to unlock [the] [o_subject]?")
 getspec()

 "unlock [o_subject] with [o_spec]"
 printcr("[the] [o_actor] cannot unlock [the] [o_subject] with [the] [o_spec].")

 DEFAULT
 printcr("I only understood you as far as wanting to unlock something.")
ENDVERB

verb open
$VERB open
 PROLOGUE
 if not(equal(o_subject, %none)) then
 if not(testflag(o_subject.f_openable)) then
 printcr("[the] [o_subject] is not something that can be opened.")
 disagree()
 else
 if testflag(o_subject.f_open) then
 printcr("But [the] [o_subject] [o_subject.r_be] is already open.")
 disagree()
 endif
 endif
 endif

 "open"
 printcr("What do you want to open?")
 getsubject()

 "open [o_subject]"
 printcr("[the] [o_actor] can't open that.")
ENDVERB

(c) 2016, 2017, 2018 Marnix van den Bos 50

verb lock
$VERB lock
 PROLOGUE
 if not(equal(o_subject, %none)) then
 if not(testflag(o_subject.f_lockable)) then
 printcr("[the] [o_subject] is not something that can be locked.")
 disagree()
 else
 if testflag(o_subject.f_locked) then
 printcr("But [the] [o_subject] [o_subject.r_be] is already locked.")
 disagree()
 endif
 endif
 endif

 "lock"
 printcr("What do you want to lock?")
 getsubject()

 "lock [o_subject]"
 printcr("How do you want to lock [the] [o_subject]?")
 getspec()

 "lock [o_subject] with [o_spec]"
 printcr("[the] [o_actor] cannot lock [the] [o_subject] with [the] [o_spec].")

 DEFAULT
 printcr("I only understood you as far as wanting to lock something.")
ENDVERB

verb close
$VERB close
 PROLOGUE
 if not(equal(o_subject, %none)) then
 if not(testflag(o_subject.f_openable)) then
 printcr("[the] [o_subject] is not something that can be closed.")
 disagree()
 else
 if not(testflag(o_subject.f_open)) then
 printcr("But [the] [o_subject] [o_subject.r_be] is already closed.")
 disagree()
 endif
 endif
 endif

 EPILOGUE
 if not(islit(o_player)) then
 # they may have closed a container with the light source
 printcr("It is now pitch black.")
 disagree()

(c) 2016, 2017, 2018 Marnix van den Bos 51

 "close"
 printcr("What do you want to close?")
 getsubject()

 "close [o_subject]"
 printcr("[the] [o_actor] can't close that.")
ENDVERB

You notice that for verb close we also have an epilogue. In the epilogue we check if closing the
subject made the light source invisible. For example, if the player puts his flashlight in a box and
closes it, it will become dark. The epilogue will detect this.

kitchen window
As already mentioned with the kitchen door object, the kitchen window is an autonomous object,
because it will have different behavior once it is broken. It makes less sense to code this all with the
door object.

$OBJECT o_kitchen_window
 DESCRIPTIONS
 d_sys "the kitchen window"

 d_longdescr "The window is made of glass, which somehow doesn't /
 surprise you."

 d_shortdescr "In the upper half of the door is a window "

 d_smash_no "You smash the window with your fist, but with no /
success. You need something heavy to break the /
window."

 d_broken "
/ Scattered over the floor is a broken window that /

 once was a part of the door."

 d_look_glass "Through the window you see the garden. At the far /
 face to the window and try to look down but can't /
 see right behind the door. If you could only stick /
 your face further through."

 d_look_no_glass "Because the window is no longer there, you can stick /
 your head through the hole. There's a rusty key in /
 the outside of the keyhole!"

 d_climb "You don't fit through the window. It's way too small (or /
 you are too big)."

 CONTAINED in o_kitchen_door

 FLAGS
 f_broken = 0

(c) 2016, 2017, 2018 Marnix van den Bos 52

 TRIGGERS
 "examine [o_kitchen_window]" -> t_exa
 "look through [o_kitchen_window]" -> t_look_through
 "break [o_kitchen_window]" -> t_break_no
 "break [o_kitchen_window] with [o_spec]" -> t_break
 "throw [o_subject] [prepos] [o_kitchen_window]" -> t_throw
 "climb through [o_kitchen_window]" -> t_climb
 "go through [o_kitchen_window]" -> t_climb

 t_entrance
 if testflag(f_broken) then
 printcr(d_broken)

 t_look_through
 if testflag(f_broken) then
 printcr(d_look_no_glass)
 clearflag(o_rusty_key.f_hidden)
 else
 printcr(d_look_glass)

 t_break_no
 printcr(d_smash_no)

 # break and throw cannot be the same trigger because they
 # have their subject and specifier reversed.
 t_break
 print("You throw [the] [o_spec] at the window")
 if not(testflag(o_spec.f_heavy)) then
 printcr(", but it bounces back. It obviously isn't /
 heavy enough.")
 move(o_spec, l_kitchen)
 else
 printcr(" and it goes straight through. The window /
 is shattered all over the floor. One of the /
 glass fragments is a bit larger than the rest.")
 move(o_spec, l_garden)
 setflag(f_broken)
 move(%this, l_kitchen)
 move(o_fragment, l_kitchen)
 endif

 t_throw
 # may only work for 'at' and 'through'
 if equal(%prepos, at) OR equal(%prepos, through) then
 print("You throw [the] [o_subject] at the window")
 if not(testflag(o_subject.f_heavy)) then
 printcr(", but it bounces back. It obviously isn't /
 heavy enough.")
 move(o_subject, l_kitchen)
 else

(c) 2016, 2017, 2018 Marnix van den Bos 53

 printcr(" and it goes straight through. The window /
 is shattered all over the floor. One of the /
 glass fragments is a bit larger than the rest.")
 move(o_subject, l_garden)
 setflag(f_broken)
 move(%this, l_kitchen)
 move(o_fragment, l_kitchen)
 endif
 else
 nomatch()

 t_climb
 printcr(d_climb)
 disagree()

END_OBJ

Triggers t_break and t_throw are almost identical. But because they have subject and specifier
reversed, we must code separate triggers. We also need an additional common flag for these
triggers: f_heavy.

We must also define some additional verbs in our vocabulary: break, throw and climb.

verb climb

$VERB climb
 "climb"
 printcr("What do you want to climb?")
 getsubject()

 "climb [o_subject]"
 printcr("[the] [o_subject] is not something to climb.")

 "climb [prepos] [o_subject]"
 printcr("[the] [o_actor] cannot climb [prepos] [the] [o_subject].")

 DEFAULT
 printcr("I only understood you as far as willing to climb something.")
ENDVERB

(c) 2016, 2017, 2018 Marnix van den Bos 54

verb break

VERB break SYNONYM destroy
 "break"
 printcr("What do you want to break?")
 getsubject()

 "break [o_subject]"
 printcr("[the] [o_actor] can't break [the] [o_subject].")

 "break [o_subject] with [o_spec]"
 printcr("[the] [o_actor] can't break [the] [o_subject] with [the] [o_spec].")

 DEFAULT
 printcr("I only understood you as far as wanting to break something.")
ENDVERB

verb throw

VERB throw
 PROLOGUE
 # actor must hold the subject
 if not(equal(o_subject, %none)) then
 if not(owns(o_actor, o_subject)) then
 printcr("[the] [o_actor] must be holding [the] [o_subject] first.")
 disagree()
 endif
 endif

 "throw [o_subject] [dir]"
 "throw [o_subject] to [dir]"
 if valdir(l_location, %dir) then
 move(o_subject, %dir)
 printcr("Thrown.")
 else
 printcr("[the] [o_subject] bumps to the [dir] wall and falls on the floor.")
 move(o_subject, l_location)

 "throw [o_subject] [prepos] [o_spec]"
 printcr("Throwing [the] [o_subject] [prepos] [the] [o_spec] won't work.")

 DEFAULT
 printcr("I only understood you as far as wanting to throw something.")
ENDVERB

We also coded some standard functionality in the throw verb for throwing objects in a particular
direction.

The strings "throw [o_subject] to [dir]" immediately follows "throw [o_subject] [dir]". This means
that the code that follows applies to both commands.

(c) 2016, 2017, 2018 Marnix van den Bos 55

Next, we’ll continue with the keyhole object.

keyhole

$OBJECT o_keyhole
 DESCRIPTIONS
 d_sys "the keyhole"

 d_longdescr ""

 d_shortdescr "and you also see a keyhole."

 d_peek "You peek through the keyhole but you cannot see a thing. /
 something on the other side of the keyhole blocks your view."

 d_look "You see the garden. At the far east end, there is a /
 garden shed."

 CONTAINED in o_kitchen_door

 TRIGGERS
 "examine [o_keyhole]" -> t_look_through
 "look through [o_keyhole]"-> t_look_through

 t_entrance
 # don't print there is a keyhole when entering the room
 agree()

 t_look_through
 if owns(o_keyhole, o_rusty_key) then
 if cansee(o_player, o_rusty_key) then
 printcr("You can't, since there is a key in the keyhole.")
 else
 printcr(d_peek)
 endif
 else
 printcr(d_look)
 endif
 disagree()

END_OBJ

With the keyhole object we don’t use d_longdescr and d_shortdescr. For examining we use
t_look_through and default t_entrance will always use d_sys because the keyhole is a part of the
door that cannot be removed (“…. [this]….” Will print d_sys from the current object).

This part of the common t_entrance triggerapplies for the keyhole object:

(c) 2016, 2017, 2018 Marnix van den Bos 56

 else
 if not(owns(o_player, %this, 0)) then
 # it´s not (in) some object the player carries (0 means all levels of containment)
 setflag(f_seenbefore)
 print("There is [a] [this] [r_preposition] [the] ")
 print(owner(%this))
 printcr(".")
 endif

rusty key

$OBJECT o_rusty_key
 DESCRIPTIONS
 d_sys "the rusty key"

 d_longdescr "An old rusty metal key."

 d_shortdescr "An old rusty metal key."

 CONTAINED in o_keyhole

 FLAGS
 f_takeable = 1
 f_hidden = 1 # key is in the other side of the keyhole

 TRIGGERS
 "inventory" -> t_i
 "examine [o_rusty_key]" -> t_exa

END_OBJ

(c) 2016, 2017, 2018 Marnix van den Bos 57

glass fragment

$OBJECT o_fragment
 DESCRIPTIONS
 d_sys "the glass fragment", "the shard", "the splinter"

 d_longdescr "The fragment is about 5 inches long and has a sharp edge."

 d_shortdescr "There is a glass fragment here."

 d_carpet "You cut the carpet along its sides and it comes loose /
 from the floor, revealing a trapdoor!"

 CONTAINED in l_storage

 FLAGS
 f_takeable = 1

 TRIGGERS
 "inventory" -> t_i
 "examine [o_fragment]" -> t_exa
 "cut [o_carpet] with [o_fragment]" -> t_cut

 t_cut
 if not(owns(o_player, %this)) then
 printcr("[[picking up the fragment first]")
 endif
 if not(testflag(o_carpet.f_cut)) then
 setflag(o_carpet.f_cut)
 move(o_trapdoor, l_cellar)
 move(o_carpet, o_player)
 setflag(o_carpet.f_bypass)
 printcr(d_carpet)
 else
 printcr("You already did that.")

END_OBJ

We don’t want the carpet lying around after cutting it, so we make the player pick it up in the cut
action.

For the glass fragment we need to define the verb “cut”.

(c) 2016, 2017, 2018 Marnix van den Bos 58

Verb cut

$VERB cut SYNONYM saw
 "cut"
 printcr("What do you want to cut?")
 getsubject()

 "cut [o_subject]"
 printcr("How do you want to cut [the] [o_subject]?")
 getspec()

 "cut [o_subject] with [o_spec]"
 printcr("[the] [o_actor] cannot cut [the] [o_subject] with [the] [o_spec].")

 DEFAULT
 printcr("I only understood you as far as wanting to cut something.")
ENDVERB

toaster
The toaster object is in the kitchen. We need the toaster to break the window in the kitchen door so
we can reach the key that is on the outside of the door

The toaster object

$OBJECT o_toaster
 DESCRIPTIONS
 d_sys "the toaster"

 d_longdescr "An old toaster, quite heavy. The power cord /
 has been cut off."

 d_shortdescr "There's a toaster here."

 CONTAINED in l_kitchen

 FLAGS
 f_takeable = 1
 f_heavy = 1

 TRIGGERS
 "inventory" -> t_i
 "examine [o_toaster]" -> t_exa

END_OBJ

We set flag f_heavy for the toaster so it can be used to break the window in the kitchen door.

(c) 2016, 2017, 2018 Marnix van den Bos 59

hacksaw

$OBJECT o_hacksaw
 DESCRIPTIONS
 d_sys "the hacksaw", "the saw"

 d_longdescr "This is just an ordinary hacksaw. It can be used /
 to saw metal objects. The saw looks a bit worn, /
 but it probably will last for one more saw job."

 d_shortdescr"There is a hacksaw here."

 d_no_saw "The saw is pretty worn. It will probably last for /
 one more saw job and your planned action is unlikely /
 to be that job."

 d_worn "The saw is completely worn out. Whatever you are going to /
 do with it, it won't be a saw job."

 CONTAINED in l_shed

 FLAGS
 f_takeable = 1
 f_worn = 0

 TRIGGERS
 "inventory" -> t_i
 "examine [o_hacksaw]" -> t_exa
 "saw [o_subject] with [o_hacksaw]" -> t_saw

 t_exa
 if testflag(f_worn) then
 printcr(d_worn)
 else
 printcr(d_longdescr)
 endif
 disagree()

 t_saw
 if not(equal(o_subject, o_drain_pipe_closet)) then
 if testflag(f_worn) then
 printcr(d_worn)
 else
 printcr(d_no_saw)
END_OBJ

We only allow the user to use the hacksaw once, to cut the drain pipe in the closet. For all other
situations we have defined rejection messages.

We do not make a separate “saw” verb but define a synonym for the “cut” verb instead.

(c) 2016, 2017, 2018 Marnix van den Bos 60

stairs
The stairs is an object that will be available in the following locations:

 l_hallway_north

 l_halfway;

 l_upstairs.

From within these locations, the player must be able to refer to the stairs. The stairs will be moved to
the location once the player enters it.

The first time the examine command is given, it will only work if the player is in location l_halfway
(halfway up the stairs). Once examined from location l_halfway, the examine command will also
work from the other two locations (we use flag f_exa to check for this).

$OBJECT o_stairs
 DESCRIPTIONS
 d_sys "the stairs", "the staircase"

 d_exa "You see nothing special about the stairs."

 d_exa_hollow "It looks just like a staircase with one /
 step that sounds hollow when stepped on."

 d_longdescr "It's a wooden staircase. There are 15 steps. You can refer /
 to a particular step with 'step <number>'."

 d_shortdescr "" # included in room description for hallway south and halfway

 d_count "There are 15 steps. You can refer to a particular step with /
 'step <number>'."

 d_cant_see "It's hard to get a good view from here. If you were halfway /
 the stairs you would have a better view."

 CONTAINED in l_hallway_south

 FLAGS
 f_exa = 0 # Not yet examined.

 TRIGGERS
 "examine [o_stairs]" -> t_exa
 "look at [o_stairs]" -> t_exa
 "count [o_steps]" -> t_count

 t_entrance
 agree() # Must execute t_entrance for contained objects (steps).

 t_exa
 if (equal(l_location, l_hallway_south) OR equal(l_location, l_upstairs))

(c) 2016, 2017, 2018 Marnix van den Bos 61

 AND not(testflag(f_exa)) then
 printcr(d_cant_see)
 else
 # we are halfway
 # if they have not yet heard the hollow sound, we don't mention it
 if testflag(l_upstairs.f_seenbefore) then
 setflag(f_exa)
 printcr(d_exa_hollow)
 else
 printcr(d_longdescr)

 t_count
 printcr(d_count)

END_OBJ

Now, we also need a verb 'count':

$VERB count
 "count"
 printcr("1 2 3")

 "count [o_subject]"
 printcr("[the] [o_subject] is not something that can be counted.")

 DEFAULT
 printcr("I only understood you as far as wanting to count something.")
ENDVERB

steps
The steps object is part of the stairs. There are 15 steps and they can be referred to individually (but
there is only one steps object). Referring to steps goes by “step <number>”. The number entered by
the player is captured in the %ord wildcard, where ord stands for ordinal.

A little something about number wildcards
XVAN has two number wildcards: %value and %ord. The difference is best explained with some
examples:
%ord captures ordinal numbers, something with a certain order. “examine step 5” will cause the
number 5 to be stored in %ord.
%value captures values, all other numbers. “set dial to 1234” or “enter 1234 on keypad” will store
the number 1234 in %value.

Step 11 is a special step, as soon as the player examines it, he will be notified that there is a button
next to the step.

the steps object

$OBJECT o_steps
 DESCRIPTIONS
 d_sys "the steps", "the step"

(c) 2016, 2017, 2018 Marnix van den Bos 62

 d_longdescr "There's a tiny button on the side of the step."

 d_shortdescr ""

 d_15 "There are only 15 steps."

 d_which "If you want to do something to a specific step, please refer to /
the step as 'step <number>'."

 d_moved_11 "Step 11 has disappeared, revealing a passage down."

 CONTAINED in o_stairs

 FLAGS
 f_swap = 1 # always print the d_sys last referred to by the user

 TRIGGERS
 "examine [o_steps]" -> t_exa
 "examine [o_steps] [ord]" -> t_exa_step

 t_entrance
 agree()

 t_exa
 if not(trigger(o_stairs.t_exa)) then
 disagree()

 t_exa_step
 if (equal(l_location, l_hallway_south) OR equal(l_location, l_upstairs))
 AND not(testflag(o_stairs.f_exa)) then
 printcr(o_stairs.d_cant_see)
 disagree() # stop
 endif

 if lt(%ord, 1) or gt(%ord, 15) then
 printcr("Steps are numbered from 1 to 15.")
 else
 # step 11 gives access to the closet
 if equal(%ord, 11) then
 if not(testflag(o_button.f_pressed)) then
 printcr(d_longdescr)
 clearflag(o_button.f_hidden)
 else
 printcr(d_moved_11)
 else
 printcr("You see nothing special about step [ord].")

 t_default
 if equal(o_subject, o_steps) then
 printcr(d_which)
 disagree()

(c) 2016, 2017, 2018 Marnix van den Bos 63

 else
 nomatch() # this is important for default verb code

END_OBJ

The trigger() function is used to execute a trigger from another object or location. It returns true or
false. When the trigger to be executed returns disagree, the trigger() function will return false.

button
The button is hidden until the player examines step 11.

$OBJECT o_button
 DESCRIPTIONS
 d_sys "the button"

 d_longdescr "A round button in the same color as the stairs. You have to look /
 really close to notice it."

 d_shortdescr "
/ There's a tiny button on the side of step 11."

 d_press "As you press the button, step 11 retracts a bit, lowers /
 about an inch and then slides backwards out of sight, /
 revealing a passage down into the closet!"

 CONTAINED in l_halfway

 FLAGS
 f_hidden = 1
 f_pressed = 0

 TRIGGERS
 "examine [o_button]" -> t_exa
 "examine [o_stairs]" -> t_exa_stairs
 "press [o_button]" -> t_press

 t_entrance
 if not(testflag(f_hidden)) then
 # the button is visible
 if not(testflag(f_pressed)) then
 printcr(d_shortdescr)
 else
 printcr(o_steps.d_moved_11)

 t_exa_stairs
 if not(testflag(f_hidden)) then
 printcr(d_shortdescr)

 t_press
 if testflag(f_pressed) then
 printcr("Nothing happens.")

(c) 2016, 2017, 2018 Marnix van den Bos 64

 else
 printcr(d_press)
 o_player.r_score += 50
 printcr("")
 printcr("[[Your score just went up by 50 points!]")
 setflag(f_pressed)
 blockexit(l_halfway, d)
 newexit(l_halfway, d, l_closet)
 endif
 disagree()

END_OBJ

closet door
The closet door cannot be opened. Access to the closet is through the staircase when step 11 is open.

$OBJECT o_closet_door
 DESCRIPTIONS
 d_sys "the closet door"

 d_longdescr "The closet door seems to be locked."

 d_shortdescr "To the [r_direction] is a door that gives access /
to [r_access]."

 d_closet "a closet under the stairs"

 d_hallway "the north hallway"

 d_no_unlock "[the] [o_spec] does not fit."

 CONTAINED in l_hallway_north

 ATTRIBUTES
 r_direction = east
 r_access = d_closet

 FLAGS
 f_openable = 1
 f_lockable = 1
 f_locked = 1

 TRIGGERS
 "east" -> t_east
 "examine [o_closet_door]" -> t_exa
 "open [o_closet_door]" -> t_locked
 "unlock [o_closet_door] with [o_rusty_key]" ->t_unlock

 t_east
 printcr("The closet door is closed.")

(c) 2016, 2017, 2018 Marnix van den Bos 65

 disagree()

 t_locked
 printcr(d_longdescr)

 t_unlock
 printcr(d_no_unlock)

END_OBJ

The closet door is moved around between locations l_hallway_north and l_closet. We see that its
shortdescr description contains two attributes: direction and access. Depending on whether the
closet door object is in the north hallway or the closet, we change the value of the attributes. This
ensures that in t_entrance the correct description will be printed:
“To the east is a door that gives access to a closet under the stairs.”
Or
“To the west is a door that gives access to the north hallway.”

But, wait a second. I understand you want to move the closet door to the locations where it must be
in scope. I compared it to the stairs object that is moved around as well, and the stairs object is
moved in the t_entrance trigger from the location where it must end up whereas the closet door
object is moved in a special trigger from the location that the player is leaving.
=> when the player is moving from south hallway to halfway stairs, the stairs object is moved to

halfway stairs in t_entrance from halfway stairs.
=> when the player is moving from the kitchen to hallway north, the closet door object is moved in

t_south from the kitchen and NOT in t_entrance from hallway north.
Why?

There’s a good reason for that. The stairs object has no actions for its t_entrance trigger (other than
agree). The closet door’s t_entrance trigger must print a description. Remember that in the player’s
t_move trigger the entrance(l_location) function is called? This function creates a list of all objects
whose t_entrance must be called. If one of these t_entrance triggers adds another object (like
moving the stairs or the closet door) this object will not be on the list and its t_entrance trigger will
not be called. For the stairs this is not an issue, because its t_entrance doesn’t do anything, but for
the closet door it is. We solved it by moving the closet door from the current location if the player is
going to a location from where he must be able to refer to the closet door.
But, the living room also leads to the north hallway does not have a trigger to move the closet door
to the north hallway? Right, but the only way you can go from the living room to the north hallway is
when you came from the north hallway first. So the closet door will already be there.

floor
The floor is sort of a scenery object. We want the user to be able to refer to the floor, but is has all
the default replies. We override the common t_entrance trigger with a local one that doesn’t do
anything, because we don’t want the floor to be mentioned when entering the closet or when
looking around.

(c) 2016, 2017, 2018 Marnix van den Bos 66

When necessary, the carpet and the trapdoor will respond to “examine floor”. The floor object will
check whether carpet or trapdoor are visible and if not, it will make sure (through nomatch()) that
the examine verb prints the default message.

(c) 2016, 2017, 2018 Marnix van den Bos 67

$OBJECT o_floor
 DESCRIPTIONS
 d_sys "the floor"

 CONTAINED in l_closet

TRIGGERS
 "x [o_floor] " -> t_exa

 t_entrance # don't call common t_entrance
 agree()

 t_exa
 if owns(l_closet, o_carpet) OR not(testflag(o_trapdoor.f_hidden)) then
 # do nothing, carpet and/or trapdoor will print a message
 agree()
 else
 # let verb print default message
 nomatch()

END_OBJ

Next are the carpet and the trapdoor.

Carpet
The carpet hides the trapdoor. The sides of the carpet are glued to the floor. To reveal the trapdoor,
the player has to cut the sides of the carpet with the glass fragment. After cutting the carpet we
don’t want it to lay around, so we move it into the player’s inventory.

$OBJECT o_carpet
 DESCRIPTIONS
 d_sys "the old carpet"

 d_longdescr "The carpet doesn't seem very expensive. It just /
 about covers the floor. On a closer examination, it /
 turns out that its sides are glued to the floor."

 d_shortdescr "On the floor is an old carpet."

 d_cut "You use the [o_fragment] to cut along the glued /
 sides of the carpet. You grab the middle part /
 of the carpet that now is no longer attached to /
the floor and lift it. Removing the carpet /
 reveals a trapdoor in the floor!."

 d_no_move "The carpet won't move. On closer examination /
 you find that its edges are glued to the floor."

 d_exa_moved "It's just an old carpet with the edges cut off /

(c) 2016, 2017, 2018 Marnix van den Bos 68

 by a sharp object."

 CONTAINED on o_floor

 FLAGS
 f_takeable = 1
 f_moveable = 1
 f_cut = 0

 TRIGGERS
 "inventory" -> t_i
 "examine [o_carpet]" -> t_exa
 "examine [o_floor]" -> t_exa
 "lift [o_carpet]" -> t_move
 "take [o_carpet]" -> t_move
 "move [o_carpet]" -> t_move
 "cut [o_carpet] with [o_fragment]" -> t_cut

 t_exa
 if not(testflag(f_cut)) then
 nomatch()
 else
 printcr(d_exa_moved)

 t_move
 if testflag(f_cut) then
 printcr("You already cut the carpet loose.")
 else
 printcr(d_no_move)

 t_cut
 if not(testflag(f_cut)) then
 printcr(d_cut)
 setflag(f_cut)
 clearflag(o_trapdoor.f_hidden)
 move(o_carpet, o_player)
 else
 printcr("You already cut the carpet.")
 endif
 disagree()

END_OBJ

trapdoor
When the player opens the trapdoor while the flames are not extinguished, we only allow him three
more turns in the closet before it gets too hot. We define a timer m_heat that counts down and fires
after three moves

(c) 2016, 2017, 2018 Marnix van den Bos 69

timer m_heat

m_heat
 init 3
 step 1
 direction down
 interval 1
 state stop
 trigger_at 0
 execute l_closet.t_leave

We must define a local trigger t_leave with the closet object.

Situations when the timer is started/stopped/updated:

 when the player enters the closet with trapdoor open and flames not extinguished: timer
started;

 when the player is in the closet and opens the trapdoor and flames not extinguished: timer
started;

 when the player leaves the closet: timer stopped and set to 3 in trigger t_exit;

 when the player is in the closet and closes the trapdoor: timer stopped and set to 3.

object trapdoor

$OBJECT o_trapdoor
 DESCRIPTIONS
 d_sys "the trapdoor", “the trap door”

 d_longdescr "The trapdoor is made of laminated wood. It seems large /
 enough for a person to fit through.."

 d_shortdescr "In the middle of the floor is a trapdoor, "

 d_open "The trapdoor gives access to the cellar. Through the open /
 trapdoor you see a stairway leading down."

 CONTAINED in l_closet

 FLAGS
 f_hidden = 1
 f_openable = 1

 TRIGGERS
 "examine [o_trapdoor]" -> t_exa
 "open [o_trapdoor]" -> t_open
 "close [o_trapdoor]" -> t_close

(c) 2016, 2017, 2018 Marnix van den Bos 70

 t_entrance
 if not(testflag(f_hidden)) then
 print(d_shortdescr)
 setflag(f_seenbefore)
 if testflag(f_open) then
 printcr("which is open.")
 # player cannot see the flames
 if not(testflag(o_flames.f_extinguished)) then
 printcr(o_flames.d_flames)
 starttimer(m_heat) # will count down to 0
 endif
 else
 printcr("which is closed.")

 t_exit
 if testflag(o_flames.f_extinguished) then
 # stop and reset the heat timer
 stoptimer(m_heat)
 m_heat = 3

 t_open
 setflag(f_open)
 print(d_open)
 if not(testflag(o_flames.f_extinguished)) then
 starttimer(m_heat)
 printcr(o_flames.d_flames)
 else
 printcr("")

 t_close
 if not(testflag(o_flames.f_extinguished)) then
 printcr("It's less hot now. This feels much better.")
 stoptimer(m_heat)
 m_heat = 3
 else
 printcr("closed.")
 endif
 clearflag(f_open)
END_OBJ

And we also need a trigger t_leave that we will code in location l_closet. Why in l_closet and not in
the trapdoor? Well, both are possible, we chose l_closet because leaving seems like a location thing.

(c) 2016, 2017, 2018 Marnix van den Bos 71

new version of l_closet

$LOCATION l_closet
 DESCRIPTIONS
 d_sys "the closet"

 d_longdescr "You are in a dark closet below the staircase. To the west is /
 the closet door, which is closed."

 d_shortdescr "Closet"

 d_leave "
/ The heat is getting too much for you. You hurry back up to the /

 stairs where it is much cooler."

 EXITS
 u -> l_halfway

 TRIGGERS
 "examine [l_closet]" -> o_player.t_look

 t_entrance
 printcr(d_shortdescr)
 printcr(d_longdescr)
 if not(testflag(o_trapdoor.f_hidden)) then
 printcr("Visible exits are up and down.")
 else
 printcr("The only visible exit is up.")
 endif

 t_leave
 # timer m_heat has fired
 stoptimer(m_heat)
 m_heat = 3
 printcr(d_leave)
 move(o_player, u)
 printcr("")
 printcrbold(l_halfway.d_shortdescr)

END_LOC

(c) 2016, 2017, 2018 Marnix van den Bos 72

flames

$OBJECT o_flames
 DESCRIPTIONS
 d_sys "the flames", "the fire"

 d_longdescr "Because of the heat you cannot get close enough for
a good examination."

 d_shortdescr "" # flame entrance printed by the trapdoor

 d_flames "A tremendous heat is coming through the open trapdoor. /
You look down and see a dark red glow deep down in /
the cellar."

 d_extinguish "As soon as the water touches the flames, you hear a loud hissing /
sound, followed by the appearance of lots of steam. After a /
while, the hissing gets less until it completely stops. The fire /
 has died.

/ It seems safe to go down into the cellar now."

 CONTAINED in l_cellar

 FLAGS
 f_extinguished = 0

 TRIGGERS
 "examine [o_flames]" -> t_exa
 "extinguish [o_flames]" -> t_extinguish

 t_entrance
 agree()

 t_extinguish
 printcr("It's up to you to find a way how to do that.")

END_OBJ

water tap
The water tap is in the bedroom. The tap can be opened and closed. “Turn tap” checks the current
position and then does the opposite.

When the following prerequisites have been fulfilled when opening the tap:

 trapdoor is open;

 drain pipe in closet is cut with the hacksaw;

 fire is not extinguished.

The fire in the cellar will be extinguished.

(c) 2016, 2017, 2018 Marnix van den Bos 73

If the trapdoor is closed but the drain pipe has been cut, there will be water in the north hallway,
pouring from under the closet door.

$OBJECT o_tap
 DESCRIPTIONS
 d_sys "the water tap"

 d_longdescr "It's a water tap for cold water."

 d_shortdescr "" # printed in t_entrance from sink.

 d_open "As you turn the tap to open it, water starts /
 pouring into the sink."

 d_extinguish "After a little while, you faintly here a hissing /
 sound, coming from somewhere below."

 CONTAINED in l_bedroom

 FLAGS
 f_openable = 1 # for open prologue

 TRIGGERS
 "examine [o_tap]" -> t_exa
 "open [o_tap]" -> t_open
 "close [o_tap]" -> t_close
 "turn [o_tap]" -> t_turn
 "turn on [o_tap]" -> t_open
 "turn off [o_tap]" -> t_close

 t_entrance
 # tap is handled by sink, because we want
 # to execute the sink t_entrance first
 agree()

 t_exa
 if testflag(f_open) then
 printcr("Water is pouring out of the tap into the sink.")
 else
 printcr("The tap is closed.")
 endif
 disagree()

 t_open
 if testflag(f_open) then
 printcr("The water is already running.")
 else
 setflag(f_open)
 clearflag(o_water_bedroom.f_hidden)
 if testflag(o_drain_pipe_closet.f_cut) then

(c) 2016, 2017, 2018 Marnix van den Bos 74

 clearflag(o_water_closet.f_hidden)
 if not(testflag(o_trapdoor.f_open)) then
 # put water in the hallway north
 clearflag(o_water_hall_n.f_hidden)
 endif
 endif
 printcr(d_open)
 if not(testflag(o_flames.f_extinguished)) and
 testflag(o_trapdoor.f_open) and testflag(o_drain_pipe_closet.f_cut) then
 setflag(o_flames.f_extinguished)
 printcr(d_extinguish)
 endif
 endif

 t_close
 if not(testflag(f_open)) then
 printcr("It's already closed.")
 else
 clearflag(f_open)
 setflag(o_water_bedroom.f_hidden)
 setflag(o_water_closet.f_hidden)
 # water in hallway north remains
 printcr("The waterflow stops when you close the tap.")

 t_turn
 if testflag(f_open) then
 if not(trigger(t_close)) then
 disagree()
 endif
 else
 if not(trigger(t_open)) then
 disagree()
 endif
 endif

END_OBJ

(c) 2016, 2017, 2018 Marnix van den Bos 75

sink object
The sink is there because we need the drain pipe. It’s a scenery object.

$OBJECT o_sink
 DESCRIPTIONS
 d_sys "the sink"

 d_longdescr "The sink is connected to a drain pipe, which disappears /
 into the floor."

 d_shortdescr "There is a sink mounted to the wall. Above the sink /
 is a water tap."

 CONTAINED in l_bedroom

 TRIGGERS
 "examine [o_sink]" -> t_exa

END_OBJ

We’re almost there. All we must do now is describe water objects to make the game more realistic.
We want to allow the player to refer to the water when he opens the tap. There are three locations
where the player can refer to the water: in the bedroom, in the closet and in the north hallway when
the waters comes from under the closet door when the trapdoor is closed.

And of course, when we have water, we must also have a “drink” verb.

(c) 2016, 2017, 2018 Marnix van den Bos 76

water in bedroom
When the tap is closed the water is hidden.

$OBJECT o_water_bedroom
 DESCRIPTIONS
 d_sys "the water"

 d_longdescr "Just plain ordinary water."

 d_shortdescr"Water is running from the tap into the sink."

 CONTAINED in l_bedroom

 FLAGS
 f_hidden = 1
 f_takeable = 1

 TRIGGERS
 "examine [o_water_bedroom]" -> t_exa
 "get [o_water_bedroom]" -> t_get
 "drink [o_water_bedroom]" -> t_drink

 t_get
 printcr("You have nothing with you that can hold the water.")

 t_drink
 printcr("That's refreshing! You didn't realize you were thirsty.")

END_OBJ

(c) 2016, 2017, 2018 Marnix van den Bos 77

water in closet

$OBJECT o_water_closet
 DESCRIPTIONS
 d_sys "the water"

 d_longdescr "Just plain ordinary water."

 d_shortdescr"" # printed by drain pipe

 d_no_drink "It's better not to drink from the floor. if /
 you are thirsty, better go to the tap in /
 the bedroom for some fresh water."

 CONTAINED in l_closet

 FLAGS
 f_hidden = 1
 f_takeable = 1

 TRIGGERS
 "examine [o_water_closet]" -> t_exa
 "get [o_water_closet]" -> t_get
 "drink [o_water_closet]" -> t_drink

 t_entrance
 agree() # handled by closet

 t_get
 printcr("You have nothing with you that can hold the water.")

 t_drink
 printcr(d_no_drink)

END_OBJ

(c) 2016, 2017, 2018 Marnix van den Bos 78

water in hallway north

$OBJECT o_water_hall_n
 DESCRIPTIONS
 d_sys "the water"

 d_longdescr "Just plain ordinary water."

 d_shortdescr "From underneath the closet door, water /
 is coming into the hallway."

 d_no_drink "It's better not to drink from the floor. if /
 you are thirsty, better go to the tap in /
 the bedroom for some fresh water."

 CONTAINED in l_hallway_north

 FLAGS
 f_hidden = 1
 f_takeable = 1

 TRIGGERS
 "examine [o_water_hall_n]" -> t_exa
 "get [o_water_hall_n]" -> t_get
 "drink [o_water_hall_n]" -> t_drink
 t_get
 printcr("You have nothing with you that can hold the water.")

 t_drink
 printcr(d_no_drink)

END_OBJ

Verb drink

$VERB drink
 "drink"
 printcr("What do you want to drink?")
 getsubject()

 "drink [o_subject]"
 printcr("[the] [o_actor] cannot drink [the] [o_subject].")

 DEFAULT
 printcr("I only understood you as far as wanting to drink something.")
ENDVERB

drain pipein bedroom
The drain pipe in the bedroom is sort of scenery. It is used to help the player make the link between
the drain pipe in the closet and the bedroom and to deduct that he should cut the pipe in the closet
and turn on the water to extinguish the flames.

(c) 2016, 2017, 2018 Marnix van den Bos 79

We have a rejection message in case the player tries to saw this drain pipe.

$OBJECT o_drain_pipe_bedroom
 DESCRIPTIONS
 d_sys "the drain pipe"

 d_longdescr "The drain pipe emerges from the sink and disappears in /
 the floor."

 d_shortdescr "Attached to the wall is a drain pipe."

 d_no_cut "It makes little sense to cut the drain pipe here."

 CONTAINED in l_bedroom

 TRIGGERS
 "examine [o_drain_pipe_bedroom]" -> t_exa
 "cut [o_drain_pipe_bedroom] with [o_hacksaw]" -> t_cut

 t_cut
 printcr(d_no_cut)

END_OBJ

drain pipe in closet

$OBJECT o_drain_pipe_closet
 DESCRIPTIONS
 d_sys "the drain pipe"

 d_longdescr "The drainpipe comes down where the ceiling meets /
 the west wall, goes vertically down the west /
 wall and disappears in the floor."

 d_shortdescr "Attached to the wall is a drain pipe."

 d_cut "About halfway up the wall, the pipe has been cut."

 d_cut_again "You try to cut the pipe (again), but the hacksaw has /
become blunt after you used it the first time."

 d_pour "Water pours out of the upper half of the broken pipe /
 on the floor, "

 d_pour_to_hallway "where it disappears under the closet door into the hallway."

 d_pour_in_cellar "through the open trapdoor straight into the cellar."

 CONTAINED in l_closet

 FLAGS
 f_cut = 0 # not yet cut.

(c) 2016, 2017, 2018 Marnix van den Bos 80

 TRIGGERS
 "examine [o_drain_pipe_closet]" -> t_exa
 "cut [o_drain_pipe_closet] with [o_hacksaw]" -> t_cut

 t_entrance
 print(d_shortdescr)
 if testflag(f_cut) then
 print(d_cut))
 if testflag(o_tap.f_open) then
 print(d_pour)
 if testflag(o_trapdoor.f_open) then
 printcr(d_pour_in_cellar)
 else
 printcr(d_pour_to_hallway)
 endif
 endif
 else
 if testflag(o_tap.f_open) then
 printcr("You hear water running through the pipe.")

 t_exa
 if not(testflag(f_cut)) then
 printcr(d_longdescr)
 else
 printcr(d_cut)
 if testflag(o_tap.f_open) then
 print(d_pour)
 if testflag(o_trapdoor.f_open) then
 printcr(d_pour_in_cellar)
 else
 printcr(d_pour_to_hallway)
 endif
 endif
 endif

 t_cut
 if not(testflag(f_cut)) then
 setflag(f_cut)
 setflag(o_hacksaw.f_worn)
 printcr("You cut the pipe about halfway above the floor.")
 if testflag(o_tap.f_open) then
 print(d_pour)
 clearflag(o_water_closet.f_hidden)
 if not(testflag(o_trapdoor.f_open)) then
 printcr(d_pour_to_hallway)
 else
 printcr(d_pour_in_cellar)
 printcr(o_flames.d_extinguish)
 move(o_flames, l_storage)
 endif

(c) 2016, 2017, 2018 Marnix van den Bos 81

 endif
 else
 printcr(d_cut_again)
 endif
END_OBJ

End of part 3
This ends part 3 of the tutorial. We now have a complete playable story. It’s not the most exiting
story, but the purpose of this tutorial is to show how to make an XVAN story, it’s not a writing
course.

Everything we’ve done until now is in files part3-end.voc and part3-end.xvn. To make a playable
game file, run the compiler and enter part3-end.xvn as the story file name. Name the outputfile
'out.dat'. The outputfile may have any name, but if you want to use the Glk Interpreter, it must be
called out.dat. The compiler will generate the outputfile that can be played using the interpreter.
How to start the compiler and interpreter for different operating systems can be found in the XVAN
installation and user guide.

In the remainder of this tutorial are two optional parts. Optional meaning that they are not necessary
because we have a working story after part 3.

Part 4 goes into the look and feel. It changes background and text colors to white on blue and it
makes use of the status window for the Glk version of the interpreter.

Part 5 demonstrates how to build some intelligence into verbs to parse ambiguous user input
without asking the user for further clarification.

(c) 2016, 2017, 2018 Marnix van den Bos 82

Part 4 – colors, fonts and status window
In this part of the tutorial we will look into text and background colors, fonts and the use of the
status window in the Glk version of the interpreter.

Colors
By default the interpreter window shows white text on a black background. XVAN has built in
functions to change text and background colors:

 background(<color>) sets the background color

 text(<color>) sets the text color.

Possible values for <color> are blue and black. Note that blue and black must be defined as words in
the vocabulary file.

Setting the background color to either blue or white automatically sets the text color to white.

Setting the text color to either blue or white automatically sets the background color to black.

For our sample story we want white text on a blue background, so we change the player’s t_init
trigger as follows:

o_player.t_init

 t_init
background(blue) # blue background with white text
 printcr(d_init)
 printcr("")
 entrance(owner(o_player))

Fonts (Glk interpreter)
XVAN has print functions that can print boldface and italic text:

 printbold() and printcrbold()

 printitalic() and printcritalic()

These functions work only in the GLK version of the interpreter. You do not have to make separate
game source files for Glk and non-Glk. The non-Glk interpreter will handle these functions but will
print normal text.

In our tutorial story, we want the location names to be printed in boldface. In the common
t_entrance trigger and the various location t_entrance triggers we change the text
“printcr(d_shortdescr)” to “printcrbold(d_shortdescr)”. We won’t copy it all here, you’ll find it in the
final story file part4-end.xvn.

Status window (Glk interpreter)
The Glk version of the interpreter has a three line status window on top of the game window.
Following functions are available to manipulate the status window:

(c) 2016, 2017, 2018 Marnix van den Bos 83

 clearstatus() clears all text from the status window;

 printstatus() prints text from current cursor position in status window;

 printcrstatus() same as above but adds a carriage return;

 setcursor() positions the cursor at the given position in the status window.

In the status window, we want to continuously display the player’s location, number of moves and
score. We create a trigger in the player object:

t_status_window
 clearstatus()
 # print the number of moves
 setcursor(0,0)
 printstatus("Moves: [m_init]")

print the score
 setcursor(0,1)
 printstatus("Score: [r_score]")

 # print the location's name
 setcursor(0,2)
 if islit(l_location) then
printstatus(l_location.d_shortdescr)
 else
 printstatus("Darkness")

The non-Glk version of the interpreter will accept the commands but do nothing.

We want to refresh the status window at the end of every move, so we create the following timer:

m_status_window
 init 0
 step 0
 direction up
 interval 1
 state go
 trigger_at 0
 execute o_player.t_status_window

(c) 2016, 2017, 2018 Marnix van den Bos 84

This is what the status window looks like (the white part above the blue window).

This is the end of part 4. Everything we did is in the files part4-end.xvn and part4-end.voc (the last
file is identical to part3-end.voc).

(c) 2016, 2017, 2018 Marnix van den Bos 85

Part 5 – disambiguation
First, a little background information on how XVAN parses user input. After the user enters a
command string, the parser tries to translate it into an action, subjects, specifiers, etc. The parser
looks for nouns and adjectives in the user input and compares them to the d_sys descriptions from
objects and locations that are in scope.

It may occur that more than one object or location can be mapped to the user input. Let’s take the
following example: we now have two toasters in the kitchen, a red toaster and a blue toaster. The
player enters the command “get toaster”. In this situation, the parser has 2 objects that qualify as a
subject: the red toaster and the blue toaster. The player has issued an ambiguous command. In such
a situation, the parser needs more information from the player and would print a message like
“Which toaster do you mean? The red toaster or the blue toaster?”. The player would, for example,
reply with “blue” and the parser would map the blue toaster as the subject. This works well.

Now consider the following. The player is in the kitchen. He carries the blue toaster and the red
toaster is on the floor. The player enters “get toaster”. Again, the parser will find two objects that
qualify, the red toaster and the blue toaster, so it will ask the player which toaster he means.

But… considering the fact that the player is already carrying the blue toaster and that he issued a get
command, it is very likely that he means to get the red toaster. The same goes for the “drop toaster”
command: since he’s only carrying the blue toaster it is safe to assume he wants to drop the blue
toaster.

It is important to realize that the parser can only map nouns/adjectives to XVAN objects/locations.
The parser has no knowledge about the context(the action) like the interpreter has. After the parser
has finished the mapping, the interpreter will execute the trigger or verb default code with the
objects/locations it got from the parser. So, to help the parser become better in resolving
ambiguities, we must make it aware of the action.

From XVAN version 2.1 each section of default code can be extended with disambiguation rules. In
case the parser finds more than one candidate when mapping the user input, it will check the
disambiguation rules section for the verbsyntax that it is parsing. The disambiguation rules give
points to objects who – given the context - qualify better than other objects. So in our “get toaster”
example, the red toaster would get points for not being carried and the blue toaster would not.

(c) 2016, 2017, 2018 Marnix van den Bos 86

An example for the “get” verb:

$VERB get SYNONYM take SYNONYM grab
 PROLOGUE
 If equal(o_subject, %none) then
 agree()
 else
 if not(testflag(o_subject.f_takeable)) then
 printcr("[the] [o_subject] is not something that can be taken.")
 disagree()
 endif

 "get"
 printcr("What do you want to get?")
 getsubject()

 "get [o_subject]"
 DISAMBIGUATION_RULES
 If not(owns(o_actor, o_subject)) then score(5) endif
 END_RULES
 If not(owns(o_actor, o_subject)) then
 move(o_subject, o_actor)
 setflag(o_subject.f_bypass)
 printcr("[o_subject]: taken.")
 else
 printcr("But [o_actor] already [o_actor.r_have] [the] [o_subject].")

 DEFAULT
 printcr("I only understood you as far as wanting to get something.")
ENDVERB

The disambiguation rules will be evaluated for each possible subject. In our toaster example this will
be the red toaster and the blue toaster. The red toaster will be awarded5 points because it’s not held
by the player. Therefore the red toaster ‘wins’. The score() function is the only function that can be
used after the ‘THEN’ statement in the disambiguation rules section.

Keep in mind that disambiguation rules are only consulted in case multiple objects qualify for
mapping user input. If the user is carrying the blue toaster and enters “get blue toaster”, the parser
will map the subject to o_blue_toaster. There is no disambiguation here. When executing the
command, the interpreter will find – when executing the “get [o_subject” default code – that the
user is already carrying the blue toaster and will print the error message. So, disambiguation rules
and trigger/verb default code operate at different levels.

No Such Thing
In part 3 we already saw o_nst, the no-such-thing object. As explained in the previous section,
possible candidates get awarded points by the disambiguation rules. If all candidates end up with the
same amount of points, the parser still has no clue and will fall back to asking the player which object
he means.

(c) 2016, 2017, 2018 Marnix van den Bos 87

All candidates start with zero points. In our toaster example, if both the red and blue toaster are on
the floor and the player says "get toaster", both will end up with five points after applying the
disambiguation rules and the parser will ask the player which toaster he means, which is what we
want.

But if the player carries both toasters and he says "get toaster" both toasters will end up with 0
points and the parser will ask the player which toaster he means and then tell him he's already
carrying it. Which is *not* what we want.

This is where the no-such-thing object comes in. o_nst is contained in the player object and it always
participates in disambiguation. Where all objects start with 0 points in disambiguation, o_nst will
have 1 point by default.

o_nst object

$OBJECT o_nst
 # this object must always be present
 # it may be modified but removal will cause a compiler error

 DESCRIPTIONS
 d_no "no such thing"
 d_any "any such thing"

 CONTAINED in o_player

 TRIGGERS
 t_entrance
 agree()

END_OBJ

In case all objects end up with 0 points, o_nst will win. The interpreter must check for this and can
print an appropriate message.

(c) 2016, 2017, 2018 Marnix van den Bos 88

verb "get" that considers o_nst

$VERB get SYNONYM take SYNONYM grab
 PROLOGUE
 If equal(o_subject, %none) OR equal(o_subject, o_nst) then
 agree()
 else
 if not(testflag(o_subject.f_takeable)) then
 printcr("[the] [o_subject] is not something that can be taken.")
 disagree()
 endif

 "get"
 printcr("What do you want to get?")
 getsubject()

 "get [o_subject]"
 DISAMBIGUATION_RULES
 if not(owns(o_actor, o_subject)) then score(5) endif
 END_RULES
if equal(o_subject, o_nst) then
 printcr("There is [o_nst.d_no] to get.")
 disagree()
 endif
 If not(owns(o_actor, o_subject)) then
 move(o_subject, o_actor)
 setflag(o_subject.f_bypass)
 printcr("[o_subject]: taken.")
 else
 printcr("But [o_actor] already [o_actor.r_have] [the] [o_subject].")

 DEFAULT
 printcr("I only understood you as far as wanting to get something.")
ENDVERB

(c) 2016, 2017, 2018 Marnix van den Bos 89

As an example, consider the toaster scenario where the player is holding both the blue and the red
toaster and says "drop toaster".

Transcript from the tutorial game
XVAN transcript for: XVAN tutorial
version: 1.0

> l
Kitchen
This is the kitchen. There is not much here. The hallway is to the south.
There's a red toaster here.
There's a blue toaster here.
To the north is a door that leads to the garden.

> get toaster
Which toaster do you mean?
The red toaster or the blue toaster?

> blue
blue toaster: taken.

> l
Kitchen
This is the kitchen. There is not much here. The hallway is to the south.
There's a red toaster here.
To the north is a door that leads to the garden.

> get toaster
Red toaster: taken.

> i
You are carrying:
 a blue toaster
 a red toaster

> get toaster
There is no such thing to get.

> transcript
Turning off transcript mode.

Note: we used the transcript command described in section 2 to copy all screen output to file
transcript.txt.

The first "get toaster" command was issued when both the red and the blue toaster were on the
floor. Disambiguation rules did not help here (both toasters got 5 points an o_nst had 1) so the
parser had to get back to the player for more info.

The second "get toaster" command was given when the player had the blue toaster and the red one
was on the floor. Disambiguation rules gave 5 points to the red toaster, 0 to the blue and o_nst
already had 1. So, the red toaster was the winner here.

(c) 2016, 2017, 2018 Marnix van den Bos 90

The third "get toaster" command was given when the player held both toasters. So both the red and
the blue toaster ended up with 0 points and o_nst had the 1 it started with and thus won. The verb
code detected o_nst was the subject and printed the "There's no such thing to get." message.

Finally
This ends the tutorial. Everything we did is in the files part5-end.xvn and part5-end.voc. I hope the
tutorial gave enough information to start implementing your own game. The XVAN distribution
comes with a number of sample stories that can serve as examples.

For comments or questions, contact met at marnix.home@gmail.com .

Thanks for reading.

(c) 2016, 2017, 2018 Marnix van den Bos 91

mailto:marnix.home@gmail.com

	About XVAN…
	About this tutorial
	Basic things
	Vocabulary
	Object, locations and timers

	Structure of this tutorial
	Part 1 – the vocabulary
	Verbs (and default code)
	look
	examine
	get
	drop
	inventory
	go

	Directions

	End of part 1
	Part 2 – Basic things
	Common descriptions
	Common flags
	Common attributes
	Common triggers
	t_i
	t_exa
	t_entrance
	t_exit
	logging
	save and restore functions
	quit function
	o_player object
	starting the game
	Moving the player around
	looking around
	keeping the score
	save function
	verbose function

	End of part 2
	Part 3 – a sample story
	The locations
	south hallway
	north hallway
	living room
	kitchen
	closet
	cellar
	halfway stairs
	upstairs
	bedroom
	garden
	shed

	the objects
	player
	nst
	kitchen door
	kitchen window
	keyhole
	rusty key
	glass fragment
	toaster
	hacksaw
	stairs
	steps
	button
	closet door
	floor
	Carpet
	trapdoor
	flames
	water tap
	sink object
	water in bedroom
	water in closet
	water in hallway north
	drain pipein bedroom
	drain pipe in closet

	End of part 3
	Part 4 – colors, fonts and status window
	Colors
	Fonts (Glk interpreter)
	Status window (Glk interpreter)

	Part 5 – disambiguation
	No Such Thing
	o_nst object

	Finally

